Top 5 Tech Trends in Advanced Driver Assistance Systems

Display portlet menu

Top 5 Tech Trends in Advanced Driver Assistance Systems

self-driving car at intersection

Advanced driver assistance systems (ADAS) promise to enhance vehicle safety by helping to simplify the driving process, reducing sources of driver distraction and inattention that often lead to accidents. With ADAS support, drivers and their passengers can hope to find safer roadways, countering deadly trends in motor vehicle accidents.

According to the Centers for Disease Control, motor vehicle accidents rank among the top two causes of accidental injury or death. Even for non-alcohol-impaired drivers, the risk of a crash rises significantly when drivers are even briefly distracted. In fact, the risk of accidents jumps for drivers who glance away from the forward roadway for more than two seconds. Even beyond its obvious distractions, cellphone use increases accident rates for drivers who seem to be watching the road ahead but exhibit "inattention blindness" and loss of reaction time as they focus on the conversation.

Delivering ADAS designs capable of addressing these problems requires a broad combination of features and capabilities built on advances in diverse technologies. For developers, the future of ADAS lies in five key trends: embedded vision, sensors, connectivity, automotive systems infrastructure and automotive human machine interface (HMI) design.

Embedded vision

Automotive vision systems are increasingly essential for identifying and tracking potential hazards. Besides providing critical input for high-level warning functions such as lane drift or unobserved traffic, these systems provide the data needed to support a growing array of services including automatic parallel parking or traffic sign recognition for speed-change warning. Vision systems also provide the foundation for driver monitoring systems that warn when driver attention begins to wander from drowsiness or distraction. 

The emergence of specialized computer-vision software, hardware and development systems has all but erased traditional challenges in creating these systems. For example, the Avnet Blackfin® Embedded Vision Starter Kit combines development software and debug tools with an evaluation board that includes Analog Devices’ specialized BF609 Blackfin vision processor, a camera and peripherals.

Read more: Getting Started in Automotive Smart Vision Design


Beyond vision-based traffic-warning systems, ADAS requires an extensive set of sensors for monitoring the vehicle’s immediate surroundings and even drivers themselves. Sensors for light detection and ranging (LIDAR), infrared detection and radar offer powerful solutions both for adaptive cruise control (ACC), which respond to traffic changes, and for systems capable of maintaining safe distance during high-traffic stop-and-go driving.

Semiconductor manufacturers continue to deliver increasingly sophisticated ICs that integrate sensor-signal chains required for signal conditioning and processing. For example, designers can implement the core features of a LIDAR system by combining a laser with the Maxim Integrated MAX3806 optical-distance measurement IC and Maxim’s MAX1446 high-performance analog-to-digital converter.

Along with signal-chain integration, the trend toward enhanced sensor fusion combines the output of different types of sensors with additional information to provide more predictive types of warnings. For example, automotive systems designers are building systems able to predict a dangerous loss of friction between the road and the tire by combining sensor data from vehicle-acceleration sensors, tire-pressure sensors, anti-lock braking systems and electronic-stability control.


With the rapid growth in digital-data sources in vehicles, wireless networks are playing a growing role in both in-vehicle and external connectivity. Along with critical systems such as tire-pressure monitoring and anti-lock braking systems, wireless options provide greater flexibility for standard automotive communications protocols such as CAN, FlexRay and XCP, among others.

Besides eliminating wires and cables, the emergence of highly integrated wireless devices provides a flexible foundation for services able to help drivers stay informed about vehicle status, traffic conditions and alternative routes. Major new trends such as automated predictive maintenance systems and the Internet of Things (IoT) promise to link smart devices within vehicles with cloud-based applications to provide even more sophisticated services.

Automotive systems infrastructure

The rapid emergence of smart sensors and control systems in vehicles dictates a need for an improved systems foundation not only in ADAS architectures but also throughout vehicle systems design. With dozens of processors peppered throughout the vehicle, the need for a stable design platform becomes more important.

The emergence of safety functionality in real-time operating systems (RTOS) and supporting software tools provides automotive software architects and designers with the assurance of a proven software foundation. Today, engineers can find a growing list of RTOS, middleware and development tools designed to support the ISO 26262 international functional safety standard for road vehicles. In addition, industry standards such as AUTOSAR (Automotive Open System Architecture) provide designers with a common interface for linking diverse third-party software modules and applications within the vehicle.

Read more: Real-Time Operating Systems (RTOS): What’s Really at the Core of the Internet of Things?

Automotive HMI design

Even with improved vision systems, sensors, connectivity options and infrastructure, the success of ADAS ultimately lies in distraction-free methods of interacting with the driver. Advances in touchscreen technology help ensure easier interaction with passengers or with the driver when the vehicle is parked. However, for improving the driving process itself, perhaps the most promising trend lies in the application of advanced human machine interface (HMI) technologies to vehicular systems.

Touch-free HMI systems promise mechanisms for driver interaction without requiring drivers to move their hands from the steering wheel. Along with voice-operated systems, more precise driver monitoring systems using eye-tracking technologies continue to close the gap with traditional touch-based interfaces. Head-up displays (HUD) promise to help drivers maintain roadway focus, using imaging devices such as Texas Instruments’ digital light processing (DLP) chips to project high-contrast images.

ADAS promises to deliver capabilities and features needed to simplify the driving process and reduce vehicular accidents. Thanks to rapid advances in vision, sensors, connectivity, infrastructure and HMI technologies, automotive electronics designers will continue to find a growing list of cost-effective options for implementing ADAS designs.

Fig. 1: A rapid convergence in key technologies promises to simplify the driving process, eventually helping automotive systems designers distill complex information into easily understood head-up displays based on MEMS-based ICs such as Texas Instruments’ DLP devices. (Source: Texas Instruments)

Read more: Top 5 Tech Trends of Tomorrow’s Smart Cars

Related Articles
interior of autonomous car
The State of Automotive Only Starts with Autonomous Driving
March 6, 2020
Learn how the state of automotive spans a variety of applications, from electrication to in-cabin AI.
view from autonomous vehicle as it interprets street signs
Somewhere Between the Flintstones and the Jetsons
March 6, 2020
Learn more about developing adaptable automotive automation with Xilinx
automobile with sensors collecting information
We’re All Part of the Automotive Evolution
April 23, 2019
ADAS (Advanced Drive Assist Systems) and its evolution into full autonomy could see the end of road-based fatalities, injuries and incidents. Technology is now providing the solutions that can help the automotive industry achieve Vision Zero within j
test car colliding with object
Transportation Safety: 5 Protocols & Processes to Know
April 4, 2019
A dynamic range of protocols can help make our transportation technology safer.
cargo ship at port
Transportation Trends in Commercial & Non-Passenger Vehicles
March 29, 2019
Some of the most exciting technology trends shaping transportation are for commercial vehicles.
futuristic city scene
The Car: A Rolling Smart Device
February 5, 2019
Be it for streaming your favorite music, sending emails or getting real-time information on traffic jams: cars have long since played host to mobile internet—and will continue to via diagnostics, hotspots and ADAS.
man using tablet computer in industrial setting
5 of the best artificial intelligence use cases
January 3, 2019
AI’s upgraded algorithms make predictive analytics, parse data, and help businesses make smarter decisions from the boardroom to the factory floor.
Graphic of a green car flying in the air
Autonomous vehicles are the future
April 9, 2018
Autonomous vehicles do not just replace the driver, helmsman or pilot, but have the potential to create completely new business models worth billions.
Interior of European self-driving car
Meeting Next-Generation Automotive Design Challenges
April 2, 2018
As the automotive industry advances toward Level 5 fully autonomous vehicles, automotive engineers will have to continue driving more functionality out of vehicle subsystems that deliver safety, infotainment, and other features.
smartphone showing alarm feature
Key Design Considerations for Selecting the Right RF Antenna
March 16, 2018
Know when to choose standard, when to go custom.
futuristic automobile interior
How all programmable technology revolutionizes embedded vision
December 14, 2017
Autonomous driving is just the start of EV solutions. Learn how all-programmable is revolutionizing embedded vision.
close-up of orange car headlights
Automotive LEDs Deliver Greater Design Flexibility for Safety, Style and Efficiency
March 7, 2017
LED lighting has been making major inroads into the automotive market for two key reasons: safety concerns and energy consumption.
man drawing schetch of an electric car attached to a battery
Technologies and Components for Designing Electric Vehicles
March 6, 2017
Hybrid electric vehicles (HEVs) such as the Toyota Prius and the Chevy Volt and electric vehicles (EVs) such as the Nissan Leaf, BMW i3 and Tesla Model S are growing in popularity amid concern for global warming.
military plane taking off
Defense/Aero Spinoffs Remain an Exceptional Source for Breakthrough Technology
March 5, 2017
Yes, automatic across the board cuts within the Department of Defense (DoD) will put the squeeze on many within the defense/aerospace supply chain.
truck driver, highway and IoT icons
Getting Started in Automotive Smart Vision Design
March 4, 2017
Advances in embedded vision technology have heightened interest in applying smart vision solutions for automotive safety.
rear view camera on car dash with image of child riding a toy
Top 5 Myths in Automotive Vision: Designing Embedded Vision Systems Is Easier Than You Think
March 3, 2017
Vision has always occupied a special place in information science and popular culture. One does not need to be an engineer to appreciate the vast bandwidth available in normal human vision. Most people understand that the common saying “a picture i
hand navigating smart car dasboard
Automotive Electronics: Top 5 Tech Trends of Tomorrow’s Smart Cars
March 3, 2017
In the United States alone, motor vehicles travel well over four trillion miles each year according to the U.S. Department of Transportation.* To gain a sense of this distance, consider that while it takes light approximately eight minutes to travel
blue sketch of a car
Gesture Recognition, Proximity Sensors Drive Advances in Automotive Infotainment
March 3, 2017
Safety must remain paramount when designing interactive interfaces for automotive applications, including guarding against distracted driving.
Man navigating an IoT car dashboard
The Internet of Things is Driving The Internet of Autos
February 14, 2017
In the early 1900s Henry Ford made the automobile affordable and accessible. But what he really did was offer people connection. Rural residents could connect with more urban areas to sell crops and buy supplies.
Related Events
Connector Design Considerations for Advanced Automotive Systems
Date: October 29, 2019
Location: Webinar