Technologies and Components for Designing Electric Vehicles

Display portlet menu

Technologies and Components for Designing Electric Vehicles

Display portlet menu

Technologies and Components for Designing Electric Vehicles

man drawing schetch of an electric car attached to a battery

Hybrid electric vehicles (HEVs) such as the Toyota Prius and the Chevy Volt and electric vehicles (EVs) such as the Nissan Leaf, BMW i3 and Tesla Model S are growing in popularity amid concern for global warming. It’s easy to see why. According to the U.S. Department of Energy, during a typical 100-mile trip, if an HEV averages 42 miles per gallon, it will use about 2.4 gallons of gasoline. Gasoline contains approximately 24 pounds of CO2 equivalent per gallon, resulting in 57 pounds of CO2 emissions for the trip. If a vehicle powered purely by gasoline gets 25 miles per gallon, 100 miles requires 4 gallons of gasoline, resulting in 96 pounds of CO2. Calculating the numbers for EVs is a bit more complicated, since the fuel used to produce the electricity that charges the vehicle's battery needs to be taken into account. Nonetheless, with EVs there is one inevitable truth: EVs produce zero tailpipe emissions.

The basics

In a series hybrid, the electric motor is the only means of providing power to turn the vehicle’s wheels. As its name suggests, the car runs off the electric motor until the battery output falls below a certain level, at which point the gas engine kicks in to power a motor/generator that runs the car (in addition to its normal role of helping to charge the battery pack).

In a series/parallel HEV design, the engine can either drive the wheels directly or be effectively disconnected from the wheels so that only the electric motor powers the wheels (as in the series drivetrain). The Toyota Prius has made this concept popular. At lower speeds, this dual drivetrain operates more as a series vehicle, while at high speeds, where the series drivetrain is less efficient, the engine takes over and energy loss can be minimized.

From a system perspective, HEVs and EVs comprise a number of drivetrain and energy storage modules (Fig. 1). The battery pack typically uses Li-ion cells (in the range of 400 V) and is managed and monitored by a battery management system (BMS) and charged via an on-board AC/DC converter module. A DC/AC inverter uses the high voltage of the battery to drive the electric motor; it is also used for regenerative braking, putting energy back into the battery pack. A DC/DC converter is needed to connect the high-voltage battery to the conventional 12 V automotive network.

Fig. 1: Basic electrical architecture of the HEV/EV. (Source: Texas Instruments)

The main inverter

Power inverters and converters are used to invert HV battery pack direct current (DC) to alternating current (AC) for motors that propel the vehicle down the road; they also convert AC to DC to charge the HV battery pack. With an electric drivetrain, the inverter (Fig. 2) controls the electric motor in a manner somewhat equivalent to how the Engine Control Unit (ECU) of a gas or diesel internal combustion engine vehicle determines the vehicle’s driving behavior; it also captures kinetic energy released through regenerative braking and feeds this back to the battery. As a result, the range of the vehicle is directly related to the efficiency of the main inverter.

Fig. 2: Block diagram of the main inverter. (Source: Infineon Technologies)

The IGBTs are a high-voltage, high-current switch connected directly to the traction motor in the HEV or EV. The more efficient the IGBT, the less power is lost to wasted heat, resulting in better mileage (sometimes called miles per watt of energy). As an example of a power module with IGBTs available to engineers, Infineon’s Easy 1B and Easy 2B series provide a platform for different HEV and EV applications. One such unit is the F4-75R07W1H3 EasyPACK 1B with the company’s fast Trench/Fieldstop IGBT H3 and Rapid 1 diode. Electrical features include increased blocking voltage capability to 650 V, low switching losses and low inductive design. Mechanical features include 2.5 kV AC 1 min insulation, integrated NTC temperature sensor and the company’s PressFIT solder-less mounting of power modules. Easy automotive power modules are available with different configurations like H-bridges (F4 modules) for DC/DC converter applications.

Unlike IGBTs, MOSFETs have no “tail” current when turned off. SiC MOSFETs, in particular, combine several desirable characteristics, such as high breakdown voltage, low on-resistance and fast switching speed, with their inherent advantages of high-temperature capability, high-power density and high efficiency. Moreover, their light weight and small volume favorably affect the whole powertrain system in an HEV and, thus, the performance and cost. As a result, it is expected they will begin replacing IGBTs in HEV/EV applications. Rohm Semiconductor’s SCT2080KEC, for example, features a breakdown voltage of 1200 V, 80 mΩ on resistance, and turn-on/ urn-off time of less than 70-90 ns, enabling switching frequency in the hundreds of kHz range.

Usable as a hybrid powertrain driver, International Rectifier’s automotive-qualified AUIRB24427S high-current, dual low-side driver IC features output current in excess of 6 A per channel across the full temperature range and is designed to drive large IGBT and MOSFET gates in modules or discrete packages. Due to the device's extremely low output impedance in turn-on and turn-off mode, power losses are said to be low, allowing operation in harsh and high-temperature environments such as in HEV power supply stages as a primary- or secondary-side driver.

MCUs in control

At the risk of oversimplification, the motor controller consists of a microcontroller, a power output stage and the motor together with a rotor position sensor, which requires a resolver-to-digital converter (RDC) to determine the angular position and rate as quickly and precisely as possible. This information can be forwarded to the microcontroller, so that it can be taken into account in the motor control algorithms, or the RDC can be integrated in the MCU. This results in a simplified system architecture, where rotor position, sinusoidal and co-sinusoidal values, and the angular rate are available to the MCU at all times.

One of the newest MCUs developed for motor control in HEVs and EVs is the Renesas RH850/C1x Series of 32-bit controllers. Based on the 40 nm process, the RH850/C1x Series features the RH850/C1H and RH850/C1M MCUs, which integrate large flash memory capacity achieved through 40 nm metal oxide nitride oxide silicon (MONOS) process technology. MONOS characteristics include fast readout, low power consumption and large storage capacity. The parts also offer the necessary motor control peripherals and single/dual motor control options needed to support fine-grained motor control and functional safety. In particular, there are two product types: the RH850/C1M, which incorporates a single RDC for single motor control, and the RH850/C1H, which incorporates two RDCs for dual motor control. The RH850/C1M and RH850/C1H devices offer memory capacities of 2 and 4 MB, respectively. In addition, 32 KB of data flash memory, with essentially the same functionality as EEPROM, is included for data storage. Samples of the RH850/C1H and RH850/C1M MCUs are scheduled to be available in early 2015. Mass production is scheduled to begin in May 2016.

DC/DC converters

Different voltage levels are required by the various electronic components in a car or truck. The most basic requirement for DC/DC conversion is to power the traditional 12 V loads. When a standard combustion engine vehicle is operating, an alternator connected to the engine provides the power for all electrical loads and also recharges the battery. The internal combustion engine in HEVs can be off for extended periods of time, so an alternator cannot be relied upon to provide power to auxiliary loads. A DC/DC converter charges the 12 V battery from the HV bus, thus eliminating the 14 V alternator.

The system can be realized with an MCU controlling both the high- and low-voltage side of the converter such as in TI’s Piccolo Real-Time 32-Bit Fixed-Point TMS320F2802x/3x devices. These include 40 to 60 MHz variants, up to 128 kB of flash memory, a high-speed 12-bit ADC, high-resolution enhanced Pulse Width Modulators along with a host of other modules such as high-precision on-chip oscillators, analog comparators, communication interfaces and general-purpose I/O. Designers can get started easily with a variety of Piccolo hardware evaluation tools and application kits from TI.

Battery management

To power the electric motors, large battery packs are made up of hundreds of cells installed in the vehicle and producing about 400 V of power. The battery packs are managed and monitored by a battery management system (BMS) and charged via an on-board AC/DC converter module, with voltages ranging from 110 V single-phase to 380 V three-phase systems.

The battery management system is a key element in the overall HEV and EV architecture. It can not only extend the battery’s lifetime, but it can also extend the possible range of the vehicle.  The State of Health (SoH), State of Charge (SoC) and Depth of Discharge (DoD) of the battery are constantly checked. As battery cells age, the capacity of individual cells changes and negatively impacts the total battery capacity. Fortunately, cell supervision circuitry enables cell balancing during charging and discharging. While the vehicle power system sees the battery pack as a single high-voltage source, the battery control system must consider each battery’s condition independently. If one battery in a stack has slightly less capacity than the other batteries, then its SoC will gradually deviate from the rest of the batteries over multiple charge and discharge cycles. The more cells a pack has in a series, the greater the possible difference in state of charge, impedance and capacity affecting the energy delivery of the pack.

An onboard battery management and protection system controls battery state during charging and discharging to enable the longest possible battery life. Battery monitoring devices integrate all necessary components for voltage and current measurement, signal isolation and safety monitoring. Since most EV and HEV battery packs are now Li-ion formulations, battery protection and monitoring are a necessity. At the higher operating voltages experienced in electric vehicles, overvoltage can be catastrophic.

Components such as Texas Instruments’ BQ76PL536A (Fig. 3) include circuitry for bringing the Li-ion cells back into balance. The BQ76PL536A is a stackable three to six series cell lithium-ion battery pack protector and analog front-end that incorporates a high-accuracy ADC, independent cell voltage and temperature protection, cell balancing and a precision 5 V regulator. The BQ76PL536A can be stacked vertically to monitor up to 192 cells without additional isolation components between ICs. Each BQ76PL536A device protects the battery pack from overcharge, overdischarge and overtemperature for system safety.

Fig. 3: Functional block diagram of the BQ76PL536A. (Source: Texas Instruments)

Because batteries have a finite energy capacity, HEVs and EVs must be recharged on a periodic basis, typically by connecting to the power grid. With an onboard charger unit, the battery can be charged from a standard power outlet. For most users, 120 VAC at 15 to 20 A will be the most readily available power supply that all onboard chargers should be capable of handling. But since charging time is an important factor for car drivers, some users can take advantage of 240 VAC that will allow for faster charging times, but will require a more robust power source.

The onboard charger converts electrical power from AC to DC and controls the power flow to the high voltage battery. The charging system consists of an AC/DC rectifier to generate a DC voltage from the AC line, followed by a DC/DC converter to generate the DC voltage required by the battery pack. The long-term trend will be to move towards bi-directionality, where the charger also feeds power from the car to the smart grid. In this case the incoming power will need to undergo power factor correction (PFC) to boost the power factor to meet regional regulatory standards.

Optimized for onboard chargers and battery management in electric cars and plug-in HEVs (PHEV), Vishay Intertechnology’s AY2 capacitors are AEC-Q200-qualified, AC line-rated ceramic disc safety capacitors designed to provide high reliability for Class X1 (440 VAC) and Y2 (300 VAC) automotive applications in accordance with IEC 60384-14.3, 3rd edition. Featuring U2J, Y5S and Y5U ceramic dielectrics, the AY2 series offers a capacitance range from 10 to 4,700 pF — with tolerances down to ± 10 percent — over a temperature range of - 55 C to +125 C. The Vishay AY2 capacitors are said to be able to withstand more than 2,000 temperature cycles without a single failure, twice the AEC standard.

Resources for engineers

Not only can Avnet provide and support electronics products and systems for EV/HEV applications, it also serves automotive OEM customers by providing reference designs, system solutions, and a variety of design chain and supply chain services and capabilities. For example, the Xilinx® Zynq®-7000 Programmable SoC/Analog Devices Intelligent Drives Kit combines the Xilinx Zynq-7000 SoC ARM dual-core Cortex-A9 + 28 nm of programmable logic with the latest generation of Analog Devices’ precision data converters and digital isolation to enable high performance motor control. Also included in the kit is a Zynq reference design of field-oriented control featuring Analog Devices’ Linux framework to provide an infrastructure for quickly adding custom control algorithms.

In addition to the powertrain applications for HEVs and EVs discussed in this article, Avnet uses the know-how of our suppliers — world leaders in automotive electronics — in areas such as body control, driver information and infotainment systems, automotive lighting, ignition systems, car security and safety applications. Engineers will find Avnet well-situated to provide innovative, high-performance semiconductor solutions with best-in-class technologies for traditional as well as hybrid and electric vehicles.

Technologies and Components for Designing Electric Vehicles

Display portlet menu

Technologies and Components for Designing Electric Vehicles

Display portlet menu
Related Articles
automobile with sensors collecting information
We’re All Part of the Automotive Evolution
April 23, 2019
ADAS (Advanced Drive Assist Systems) and its evolution into full autonomy could see the end of road-based fatalities, injuries and incidents. Technology is now providing the solutions that can help the automotive industry achieve Vision Zero within j
test car colliding with object
Transportation Safety: 5 Protocols & Processes to Know
April 4, 2019
A dynamic range of protocols can help make our transportation technology safer.
cargo ship at port
Transportation Trends in Commercial & Non-Passenger Vehicles
March 29, 2019
Some of the most exciting technology trends shaping transportation are for commercial vehicles.
futuristic city scene
The Car: A Rolling Smart Device
February 5, 2019
Be it for streaming your favorite music, sending emails or getting real-time information on traffic jams: cars have long since played host to mobile internet—and will continue to via diagnostics, hotspots and ADAS.
man using tablet computer in industrial setting
5 of the best artificial intelligence use cases
January 3, 2019
AI’s upgraded algorithms make predictive analytics, parse data, and help businesses make smarter decisions from the boardroom to the factory floor.
Electronic circuit board
Batteries are key to charging options
July 6, 2018
Learn how having an understanding of the pros and cons of charging and battery options is key to realizing the full potential of your new product.
Graphic of a green car flying in the air
Autonomous vehicles are the future
April 9, 2018
Autonomous vehicles do not just replace the driver, helmsman or pilot, but have the potential to create completely new business models worth billions.
Interior of European self-driving car
Meeting Next-Generation Automotive Design Challenges
April 2, 2018
As the automotive industry advances toward Level 5 fully autonomous vehicles, automotive engineers will have to continue driving more functionality out of vehicle subsystems that deliver safety, infotainment, and other features.
smartphone showing alarm feature
Key Design Considerations for Selecting the Right RF Antenna
March 16, 2018
Know when to choose standard, when to go custom.
futuristic automobile interior
How all programmable technology revolutionizes embedded vision
December 14, 2017
Autonomous driving is just the start of EV solutions. Learn how all-programmable is revolutionizing embedded vision.
person holding smartphone on coffee table
3 levels of Qi testing
November 14, 2017
See how the Qi Sniffer and Qi Certified Product Testers can help you test and certify your Qi products.
man pulling smartphone from pocket
Watch for these two problems in your Qi wireless charging project
November 14, 2017
Here are two of the most common problems engineers face in integrating Qi wireless charging in their projects.
charging cell phone in automobile
How to get your Qi project certified by the Wireless Power Consortium
November 14, 2017
By aligning with the Wireless Power Consortium and Qi standard—the way big name brands like Apple, Samsung and Avnet have—you can help verify the quality of your product to new customers.
Bill Amelio, Avnet CEO
Qi standard is for more than just smartphones
By Bill Amelio   -   November 14, 2017
I’m not alone in my suspicion that the engineering world will soon follow a singular standard for wireless charging: the Qi standard. I think it would be the right move—and its impact would extend far beyond the charging of mobile phones.
energy harvesting concept with green batteries sprouting from the ground
Powering the Internet of Things via Energy Harvesting
March 27, 2017
The push is on to add Internet capability to everything—often called the Internet of Things (IoT)—and the challenge for design engineers is to figure out how to power each of these IoT nodes.
nurse checking person wearing health monitoring system on wrist
Internet of Things: Designing Sensor-Based Devices with Coin Cell Batteries
March 11, 2017
A popular vision of the Internet of Things (IoT) is that it will comprise billions of sensors gathering information about their local environment and transmitting that data back to servers in the cloud. Such data will be compiled, analyzed and shared
Using Programmable Logic to Build Power-Efficient Systems
March 8, 2017
The successful implementation of the Internet of Things (IoT) requires new thinking about how to power connected devices.
colorful tunnel
AC/DC Supplies: Design and Make, or Just Buy?
March 8, 2017
How to implement the ubiquitous AC/DC supply is a complicated decision with many factors and perspectives, ranging from technical to regulatory ones.
close-up of orange car headlights
Automotive LEDs Deliver Greater Design Flexibility for Safety, Style and Efficiency
March 7, 2017
LED lighting has been making major inroads into the automotive market for two key reasons: safety concerns and energy consumption.
chart depicting device power states
Power Management Techniques for Low-Energy IoT Devices
March 7, 2017
With the rise of the Internet of Things (IoT), embedded designers are, more than ever, focusing their attention and efforts on system energy usage.
military plane taking off
Defense/Aero Spinoffs Remain an Exceptional Source for Breakthrough Technology
March 5, 2017
Yes, automatic across the board cuts within the Department of Defense (DoD) will put the squeeze on many within the defense/aerospace supply chain.
self-driving car at intersection
Top 5 Tech Trends in Advanced Driver Assistance Systems
March 4, 2017
Advanced driver assistance systems (ADAS) promise to enhance vehicle safety by helping to simplify the driving process, reducing sources of driver distraction and inattention that often lead to accidents. With ADAS support, drivers and their passenge
truck driver, highway and IoT icons
Getting Started in Automotive Smart Vision Design
March 4, 2017
Advances in embedded vision technology have heightened interest in applying smart vision solutions for automotive safety.
rear view camera on car dash with image of child riding a toy
Top 5 Myths in Automotive Vision: Designing Embedded Vision Systems Is Easier Than You Think
March 3, 2017
Vision has always occupied a special place in information science and popular culture. One does not need to be an engineer to appreciate the vast bandwidth available in normal human vision. Most people understand that the common saying “a picture i
hand navigating smart car dasboard
Automotive Electronics: Top 5 Tech Trends of Tomorrow’s Smart Cars
March 3, 2017
In the United States alone, motor vehicles travel well over four trillion miles each year according to the U.S. Department of Transportation.* To gain a sense of this distance, consider that while it takes light approximately eight minutes to travel
blue sketch of a car
Gesture Recognition, Proximity Sensors Drive Advances in Automotive Infotainment
March 3, 2017
Safety must remain paramount when designing interactive interfaces for automotive applications, including guarding against distracted driving.
Man navigating an IoT car dashboard
The Internet of Things is Driving The Internet of Autos
February 14, 2017
In the early 1900s Henry Ford made the automobile affordable and accessible. But what he really did was offer people connection. Rural residents could connect with more urban areas to sell crops and buy supplies.

Technologies and Components for Designing Electric Vehicles

Display portlet menu
Related Events

No related events found