Differentiated FPGAs Provide Security in Today’s Hyperconnected World

Display portlet menu

Differentiated FPGAs Provide Security in Today’s Hyperconnected World

Display portlet menu

Differentiated FPGAs Provide Security in Today’s Hyperconnected World

Graphic depicting cyber security with a large key over a world map

We live in a hyperconnected world that is constantly redefining how people communicate, congregate, collaborate and share information globally and instantaneously. As ground-breaking innovation drives new paradigms in hyperconnectivity, many new business opportunities are created that offer enormous growth potential but are also accompanied by difficult technological and infrastructure challenges that require innovative solutions. These challenges range from protecting intellectual property (IP), ensuring security and combatting cybercrime to complying with eco-friendly standards and delivering higher system reliability.

"FPGAs…offer the fastest way to integrate a specific design into a single device."

Technology companies developing products for the hyperconnected world typically rely on application-specific standard products (ASSPs), application-specific integrated circuits (ASICs), or field-programmable gate arrays (FPGAs) to incorporate required functionalities into one or more highly-integrated devices. ASSPs are difficult to find in off-the-shelf solutions that encompass all required functions, and ASICs suffer from high cost and long design cycle times, especially as the industry moves toward smaller geometries.

FPGAs, on the other hand, offer the fastest way to integrate a specific design into a single device. They have come a long way in the past two decades with regard to integration capabilities, size and built-in functions such as complex I/Os, memories, CPUs and DSPs. The cost of FPGAs is traditionally higher than ASSPs or traditional ASICs, but they provide huge advantages for supporting and facilitating system field upgradability, design flexibility and faster time-to-market. Today’s FPGAs provide an outstanding solution for system architects, and promise to offer a significantly better overall total cost of ownership (TCO) as compared to ASICs in many next-generation designs. Current solutions from the major FPGA suppliers boast excellent innovation, and include advanced built-in functions such as math blocks, high speed serial interfaces, embedded memories and various CPU/DSP cores once only available in ASIC-based component designs.

The latest FPGAs also are unique in their ability to provide built-in features and differentiated capabilities for today’s hyperconnected systems in communications, industrial, aerospace and defense applications. These system designs need improved security, low overall power consumption, high levels of reliability and application-specific system integration targeted to the end user. Each of these elements is critical for next-generation hyperconnected system designs and can be delivered with FPGAs that incorporate them all into a single, highly integrated device:

Security: A major challenge in today’s increasingly hyperconnected world is how to protect new designs from cloning, reverse engineering or tampering. FPGAs can help achieve these objectives through the inclusion of special features that address security needs all the way down to the device level. One of the most important is a physically unclonable function (PUF) from which the Private Key in the Public/Private Key scheme can be derived in order to implement Machine-to-Machine (M2M) authentication using Public Key Infrastructure (PKI). Other key FPGA features include cryptographic accelerators, a random number generator, hardware firewalls to protect CPU/DSP cores and Differential Power Analysis (DPA) countermeasures. Together, these features allow the system architect to layer in the security that is needed throughout the system.
Low Power: In the last two decades, many advanced CPUs and MCUs have architected various power-saving modes to address the power consumption issues caused by higher frequencies and higher integrations. Only the most advanced FPGAs have been architected properly to provide similar advanced low-power capabilities while supporting higher-frequency devices. And, only recently have FPGAs become available that address the leakage problems of earlier SRAM-based solutions, and provide access to low-power modes for additional power-saving capabilities. Customers now have access to power-saving features and low-power modes implemented in non-volatile memory-based FPGAs for the first time.
High Reliability: Many commercial aviation, military systems and space vehicles are required to meet size weight and power (SWaP) targets in accordance with strict budget and extend operational product life objectives. Military systems also must operate flawlessly after and often over prolonged periods of storage, and industrial systems must comply with safety standards while medical systems similarly need the highest possible reliability. The latest flash-based FPGAs increase reliability compared to past SRAM-based generations by providing immunity to single event upsets (SEUs) that change configuration SRAM contents. This eliminates the possibility of design corruption and removes the most common system failure mode, while removing the SRAM-based FPGAs’ need for SEU mitigation.
System Integration: Integration of an embedded processor core removes the need for a soft processor core to be created in the FPGA fabric and negates the speed and size penalties of this approach. The same is true of tightly coupling peripherals and subsystems, such as memory controllers, analog blocks, DSPs and high-speed I/Os. With non-volatile FPGAs, designers do not need separate memory to hold the device configuration. Integrating FPGAs with other components, such as microprocessors, memory devices and DDR memory interfaces, reduces the component count on a board and improves the overall system reliability.

An example of the latest FPGAs designed and differentiated specifically for hyperconnected system applications is Microsemi’s SmartFusion2® System on Chip (SoC) FPGA, which addresses the full range of security, low power, reliability and system-level integration requirements in a single device.

With the industry’s most complete set of design and data security features, SmartFusion2 SoC FPGAs are designed to serve as a robust root-of-trust device with secure key storage capability, and include a variety of other important features that protect today’s hyperconnected systems from cloning, tampering or other malicious attacks. For more information, explore SmartFusion2® SoC FPGA and IGLOO2® FPGAs from Microsemi here: www.microsemi.com/products/fpga-soc/fpga-and-soc.

Differentiated FPGAs Provide Security in Today’s Hyperconnected World

Display portlet menu

Differentiated FPGAs Provide Security in Today’s Hyperconnected World

Display portlet menu
Related Articles
Using Programmable Logic to Build Power-Efficient Systems
October 29, 2019
The successful implementation of the Internet of Things (IoT) requires new thinking about how to power connected devices.
person holding superimposed globe with IoT symbols
Reimagining the ‘things’ of IoT
By Bill Amelio   -   February 28, 2019
While our collective vision for IoT’s impact on the future is grand in scale, it is still too easy for companies to get distracted by the minutiae of our present day IoT challenges.
UltraZed SoM & PCIe Carrier Card
Building PetaLinux for the UltraZed & PCIe Carrier Card
June 22, 2018
In this installment of our exploration of Avnet’s UltraZed SoM and the PCIe carrier card, we will develop an example application.
Two young men and young woman looking at tablet computer in datacenter
IoT Technology 101
By Christian Curtis   -   March 6, 2018
Learn what’s in market today for IoT and what innovations are ahead.
Man using a soldering tool to work on a circuit board
What’s A Lead Time – And Why Should You Care?
December 19, 2017
In the world of technology components, there is no Amazon to save the day, nor is there a place where you can walk in and pull an item off of a store shelf. Getting your crucial component depends on a lead time: the time it takes from when you place
Robotic machinery in a production facility
Zero Downtime Industrial IoT Using Programmable SoCs
July 10, 2017
Industry 4.0 and Industrial IoT (IIoT) systems rely on robust communication networks.
Close up of a person placing a puzzle piece
An Overview of FPGAs: The Solution to Countless Design Challenges
March 7, 2017
The field-programmable gate array as a primary processing element offers many design, debug, and production benefits with few, if any, downsides.
conceptual graphic of IoT icons around a blue globe
An Introduction to IoT Components
March 7, 2017
From locomotives and jet engines to baby monitors and home appliance controls, new applications are challenging the imaginations of designers — both in startup companies and within giant corporations.
MicroSD card
A Look at the MicroSD Card of the Future: Speed and Capacity meet Reliability
March 2, 2017
Manufacturers recently released the largest capacity and fastest microSD cards ever made. The 128 GB cards demonstrate more than a 1,000-fold increase in storage density over the last decade.

Differentiated FPGAs Provide Security in Today’s Hyperconnected World

Display portlet menu
Related Events

No related Events found