Display portlet menu


Display portlet menu

Key Design Considerations for Selecting the Right RF Antenna

smartphone showing alarm feature

By Matt McWhinney, Business Development Manager, Molex

When faced with the need to make design decisions, system engineers are challenged with multiple options, any of which can have a major impact on the effectiveness of the wireless performance. There are many considerations when selecting RF antennas for wireless electronic devices. Some design choices may already be constrained, based on the overall system design. Basic choices that a system designer may make include:

  • What frequencies (often determined by what wireless protocol – e.g., Wi-Fi, BlueTooth, Cellular, GPS, NFC etc.) are needed?
  • What modem / transmitter will be used?
  • How much power will be available for the system? (e.g., Impacts antenna choices and wireless performance)
  • How much data throughput / speed is needed?
  • How much efficiency (Antenna gain) is required?
  • Where does the antenna need to be and even potentially what orientation(s) will the device be for wireless operation (e.g., Mobile or fixed?)
  • Where will the antenna be located on the PCB? (e.g., Cabled to the PCB but inside or connected to the device? External to the device?)
  • How much flexibility exists with the overall system design to modify antenna choices (e.g., location, size, type, number of antennas in the system). For example, if an antenna is positioned too close to metal, an LCD, a battery or another device component, it may not work at all. However, if the antenna is a few millimeters away from those components, it may work fine.

Today, an overwhelming majority of antennas are not visible externally – either they are on the PCB or internally cabled to the device. The days of the external ‘walkie talkie’ antennas are distant memories when with most new wireless devices due to the efficiencies of RF electronics and the pervasiveness of wireless networks around us.

There are, of course, other considerations. Efficiency can vary by antenna type (e.g., monopole, dipole, slot, PIFA, panel, etc.) and today’s wireless devices employ many different antenna designs. That’s important because smartphones, wearable electronics, other wireless devices and the growing demand for broadband connectivity are driving the use of more cellular, Wi-Fi™ and Bluetooth® antennas. The Internet of Things (IoT) and machine-to-machine (M2M) technology are also leading to additional wireless deployments that are expected to increase productivity and efficiency while evaluating the measurement applications, quality control, decision-making and customer relationship management.

Applications for wireless devices are incredibly diverse, ranging from industrial applications to smart home devices and surveillance systems. Wi-Fi antennas are showing up on refrigerators, door bells and various other home appliances.

Choosing an Antenna
When evaluating antennas for a wireless device, the first step is always to determine if a standard, off-the-shelf antenna is suitable. Off-the-shelf antennas offer a great advantage in terms of aiding in quick time to market. Being able to quickly identify, prototype, and measure one or more antennas for a system can assure that the right choice is made and quickly – reducing overall product risk. Additionally, because their cost is amortized over large production runs, standard antennas are typically the lowest-cost option. However, today’s device designs are more complex and compact, and device manufacturers are forcing more antennas into smaller and complex geometries surrounded by unfriendly materials and objects. There may be times, however, where a custom device may be the best or only option for the application.

The Starting Line
After the frequency or frequencies and basic wireless architecture parameters have been determined, device manufacturers typically begin the design process by selecting one or more appropriate standard antennas for evaluation, which are available for virtually every allocated frequency. Based on diverse manufacturing and RF technologies, standard antennas offer high performance and ease of integration for wireless applications in the industrial, consumer, medical and automotive markets, among others. Standard antennas can perform well for less cost and risk than a custom solution and offer shorter lead times for bringing wireless products to market.

Once the antenna is selected, engineered and mounted into the prototype device, ideally there is some testing for performance in an anechoic chamber. If the antenna does not work, then either the design is modified, or another antenna is tried.

Calling on Custom
However, if a standard antenna does not work effectively, designers can utilize the design expertise of experienced antenna suppliers. The supplier may be able to customize an existing standard solution, providing the system designer with what they need, cost-effectively, and quicker than going through a ground up new design process, for a full custom antenna. Customizations of existing antennas may range from changing cable lengths or connectors on the antenna cables; to making small changes to the antenna pattern to ‘tune’ the antenna so, that it can match the performance need of the application.

The design process typically begins with the device manufacturer sharing a CAD model of the proposed product with the antenna supplier. Software is used to simulate antenna performance based on the properties of the device, the enclosure and any surrounding metal, measuring parameters such as return loss and efficiency. Based on that information, the supplier builds a prototype antenna to test it and then adjusts the design as needed.

For example, one custom project included a cellular antenna plated on the plastic device enclosure. A small number of prototypes were created and tested, and it was determined that they needed to be several millimeters shorter to compensate for the effect of the plastic enclosure. Using calipers and a sharp knife, the radiating arms were trimmed to the appropriate length based on the wavelength of the signal the device was designed to pick up. The tested, shortened antenna design went into full production.

There are many technologies that are used to produce custom antennas – one of the most common involves plating conductive antenna ‘traces’ on plastic and is called Laser Direct Structuring (LDS). LDS is used to make antennas in many 4G cell phones and other compact devices that could not support any other type of standard internal antennas. Generally, higher volumes are needed to justify the effort to use LDS and other custom antenna technologies.

Test, Retest, and Re-Retest
Once selected and designed into the system, it is very smart to test to see how effective the antenna is. Antenna design is iterative in nature. This is true with both design of the actual antenna element and can be true even when designing in an off-the shelf antenna into a system. Ask RF engineers if changing a particular antenna parameter would improve the design and they will typically say “There’s no way to know. We have to test it.” In other areas of applied science, engineers might be willing to provide an educated guess to a similar question, but with RF, antenna sensitivity to surroundings and typically razor-tight performance margins make actual testing the product the only answer – then testing it again and again, if needed.

Designers never begin a device development project hoping it will require a custom design; standard off-the-shelf RF antenna solutions are always preferred due their lower cost and short lead times. However, when a custom antenna is needed, the design and testing resources of an experienced antenna supplier are vital in creating a solution that works effectively for today’s complex, often small wireless devices.

Finally, it is worth noting that with nearly all RF devices, some type of approval is required with the full system for release to commercialization. All the previously mentioned antenna testing is not only important to ensure adequate device performance and happy end users, but it may be necessary to get FCC approval for the device. In the event that the device is used in a cellular network, it will be necessary for the device to pass the requirements of all carrier RF requirements. Generally, the higher the speed of a device on a 4G network, the more demanding and challenging this certification process is – e.g., a Smartphone is required to go through more extensive testing and validation than a LTE enabled home surveillance base-station. Devices with well-designed antennas that have gone through iterative cycles of antenna performance testing, will fare through finished product RF validation and testing such as carrier or FCC testing.

In summary, the more attention that can be given to making smart antenna choices early in the design process, the better the wireless performance will be. About the author: Matt McWhinney is a business development manager at Molex. Matt has a degree in electrical engineering, enjoys working with innovative customers and is a technology enthusiast of smart and power electronics.

Wi-Fi and Bluetooth are trademarks or registered trademarks and are the property of their respective owners.


Display portlet menu


Display portlet menu
Related Articles
Sensor for market of IIoT
Wi-Fi 6 is here. Is it time to make a move?
November 11, 2019
The Wi-Fi Alliance announced in September 2019. This refocuses attention on Wi-Fi, an old friend who has been quietly by our side but hardly top-of-mind.
interior of autonomous car
The State of Automotive Only Starts with Autonomous Driving
March 6, 2020
Learn how the state of automotive spans a variety of applications, from electrication to in-cabin AI.
view from autonomous vehicle as it interprets street signs
Somewhere Between the Flintstones and the Jetsons
March 6, 2020
Learn more about developing adaptable automotive automation with Xilinx
man wearing virtual reality headset with graphic overlays
How LoRaWAN and AI at the Edge Revolutionize the IoT
January 3, 2020
Learn how LoRaWAN and artificial intelligence (AI) at the edge can revolutionize the internet of things by reducing data transmission and improving latency.
woman with diabetic monitory
Connectivity Among Major Analog Design Considerations in Health Wearables
December 9, 2019
Development of very low powered analog body sensors, digital microcontrollers, and innovative power and battery management circuits are driving the growth of wearable healthcare products.
metal nut in venier calipers measuring tool
Is best in class the only consideration for your analog design?
December 9, 2019
It’s easy to seek out the absolute top of the line when it comes to a design. Whatever the “best” part is, is probably what’s going to be the most compelling for your design, right?
Smart car branded with Avnet and supplier logos
ADAS: paving the way for autonomous vehicles
November 11, 2019
In order to realize fully automated driving without human intervention, three conditions must be met - the vehicle must be fully aware of the surrounding environment, be able to respond accordingly when the environment changes, and the security of th
road view from inside self-driving smart car
Unreliable autonomous driving? Take a look at how difficult vehicle-mounted vision processing is
November 11, 2019
We all have high expectations for autonomous driving, a fact that’s exemplified by the display of autonomous driving technologies at every major tech expo. Development in this sector has however been accompanied by an increase in accidents related
test car colliding with object
Transportation Safety: 5 Protocols & Processes to Know
May 29, 2019
A dynamic range of protocols can help make our transportation technology safer.
cargo ship at port
Transportation Trends in Commercial & Non-Passenger Vehicles
May 29, 2019
Some of the most exciting technology trends shaping transportation are for commercial vehicles.
Graphic of 5G uses for automotive
5G is here – and maybe it’s time to buy a new car!
May 27, 2019
The mission of 5G is to create the ‘Internet of Everything’, drastically expanding the scale of the Internet in the process. As one of our most valuable possessions, it is inevitable that cars will join the network.
Interior of European self-driving car
Meeting Next-Generation Automotive Design Challenges
April 2, 2018
Thanks to engineering ingenuity and the electronic components that have become pervasive inside vehicles of all types, cars are smarter and, in many ways, safer to drive. As the automotive industry advances toward Level 5 fully autonomous vehicles, a
Three men standing in stairwell talking
Spending on design up front can save you from long-term pain
February 6, 2018
Spending money in the early phase of development may be painful, but problems with quality, production runs and backers can be far more painful.
signal dashboard
VGAs Manage, Optimize RF Signal-Chain Ranging
December 18, 2017
The variable-gain amplifier (VGA) is a critical part of the RF receiver signal chain. Its function is to solve the problem of received RF signals having more dynamic range than the analog-input circuitry can accommodate.
Person using the navigation systemm on their car dashboard
Four tech trends that improve the driver experience
September 13, 2017
Learn about ways to integrate some the most innovative features into cars, including haptic-feedback touch screens, knob replacement, smart glass and driver-notification applications.
smart car on the road at sunset with IoT icons overlay
Mastering the road ahead
August 28, 2017
The market demand for Advanced Driver Assistant Systems (ADAS) has increased by leaps and bounds. In fact, the global automotive electronics market is forecast to grow robustly over the next few years. In particular, the market value of entertainment
front view of a man looking through a magnifying glass
What!? You'll need them to strike it rich in the USB Type-C market?
August 28, 2017
The USB 3.2 standard announced in July this year increases transmission rate from 10 Gbps to 20 Gbps, effectively doubling the data bandwidth while using the existing USB Type-C architecture. And as a power transmission interface for electronic devic
side view of a sports car from the ground up
Powering the future—the hidden heroes of electric vehicle technologies
August 14, 2017
The automobile industry in Mainland China has developed at an unimaginably rapid pace in recent years and a general trend can be observed in car sales figures. A little more than twenty years ago, automobile production in Mainland China numbered only
man in dirverless car with hands off the wheel
The Growth and Increasing Sophistication of ADAS in the World
July 5, 2017
As electronics in our cars continue to become more sophisticated, ADAS (Advanced Driver Assistance Systems) are taking center stage. These systems make many of the aspects of driving easier, and---most importantly—safer.
self-driving car at intersection
Top 5 Tech Trends in Advanced Driver Assistance Systems
June 15, 2017
Advanced driver assistance systems (ADAS) promise to enhance vehicle safety by helping to simplify the driving process, reducing sources of driver distraction and inattention that often lead to accidents. With ADAS support, drivers and their passenge
rear view camera on car dash with image of child riding a toy
Top 5 Myths in Automotive Vision: Designing Embedded Vision Systems Is Easier Than You Think
June 11, 2017
Vision has always occupied a special place in information science and popular culture. One does not need to be an engineer to appreciate the vast bandwidth available in normal human vision. Most people understand that the common saying “a picture i
man drawing schetch of an electric car attached to a battery
Technologies and Components for Designing Electric Vehicles
April 29, 2017
Hybrid electric vehicles (HEVs) such as the Toyota Prius and the Chevy Volt and electric vehicles (EVs) such as the Nissan Leaf, BMW i3 and Tesla Model S are growing in popularity amid concern for global warming.
Man navigating an IoT car dashboard
The Internet of Things is Driving The Internet of Autos
April 24, 2017
In the early 1900s Henry Ford made the automobile affordable and accessible. But what he really did was offer people connection. Rural residents could connect with more urban areas to sell crops and buy supplies.
smart car dashboard
New TFT LCD Technology Shape Infotainment for Cars of the Future
April 15, 2017
Although the technology has been around since the 1990s, the use of thin-film-transistor liquid-crystal displays (TFT LCDs) is on the rise in automobiles.
person driving a semi
Getting Started in Automotive Smart Vision Design
March 27, 2017
Advances in embedded vision technology have heightened interest in applying smart vision solutions for automotive safety.
Graphic of a car's outline
Gesture Recognition, Proximity Sensors Drive Advances in Automotive Infotainment
March 17, 2017
Safety must remain paramount when designing interactive interfaces for automotive applications, including guarding against distracted driving.
Person using the navigation console in their car
Automotive Electronics: Top 5 Tech Trends of Tomorrow’s Smart Cars
March 3, 2017
In the United States alone, motor vehicles travel well over four trillion miles each year according to the U.S. Department of Transportation.*
WiFi router with man in the background using tablet
How wireless communication protocols make or break designs
March 3, 2017
The design process includes many critical decisions for engineers, such as which wireless communications protocol to use.


Display portlet menu
Related Events

No related Events found