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Introduction 

The default settings provided by Xilinx in the SDK for the Zynq devices and Cortex A9 
processors will be sufficient for a large number of designs to function perfectly 
without any additional intervention.  However it is often desirable for the user to take 
greater control of the settings on the processors to either boost performance in their 
designs, or to take advantage of specific features.  One such example of a details 
processor setting is the control of the caches and Memory Management Unit (MMU).  
This guide shows how to control the various cache / MMU features using run time C 
code, and also explores how to integrate that functionality into a custom Xilinx SDK 
library for easier access and to facilitate design re-use. 

The Basics 

Just like many application processor units, the Cortex A9 has some highly advanced 
features which enable users to achieve higher performance from their embedded 
products.  Specifically, the Zynq 7000 series SoC devices are equipped with Level 1 
and Level 2 caches, and an advanced Memory Management Unit (MMU).  Caches are 
arrays of local memory situated close to the processor core which keep a local copy 
of smaller sections of main (external) memory.  Accesses to external DDR memory in 
all processor systems can be slow and require many cycles of latency for each fetch 
and store instruction.  Having a local copy of instructions and user data enables the 
processor to execute code much faster, by removing the need to access external 
devices for every executed processor instruction.  The cache controllers use 
sophisticated algorithms to automatically fetch and locally store regions of the 
external DDR memory which are likely to be needed by the processor.  Greater 
control of these algorithms is often desirable, for example if the user wants to control 
the caches to devote half of the cache array to a specific processor in a multi-core 
system, or to always keep a certain region of memory cached for better performance 
in specific parts of their design.  Caching modes can also be adjusted to use “write 
back” and “write through” schemes, providing users with finer grain control of when 
external memory is updated by the cache controller.  Sometimes it is also desirable 
to disable caching completely for certain regions of memory.  Beyond the features 
directly attributable to caching, the MMU allows memory mapping features to be set, 
resulting in the translation of one memory address to another.  In addition, it is 
possible to “flag” certain areas of memory to have specific behaviours such as 
“sharable”, “read only”, or even to be protected against unintentional execution.  
Examples of these latter behaviours can be attractive to programmers who have a 
security focus and, for example, can be extremely powerful ways to deny hackers the 
ability to execute rogue code from the stack which might have been placed there by 
way of a maliciously crafted buffer overflow attack. 
 
No matter what the desired usage model may be, all of these settings are controlled 
by the various registers and configuration tables which are buried deep within the 
processor core.  Accessing these advanced features can be a complex task requiring 
an intimate understanding of the underlying hardware architecture, and usually 
requires manual decoding of some very unintuitive hexadecimal register values.  For 
this reason it is often desirable to write some function calls to automate the process.  
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The hard work can be done once by the user, and then forever more consigned to 
the inner workings of a carefully written software function. 
 

The Objective 

It would be futile and foolish for any application note or technical guide to attempt to 
discuss every possible combination of features available to the user.  The number of 
possible combinations are too vast to cover, and for those reasons this guide will 
focus on one specific goal and explain how to achieve it.  If users wish to access 
other similar features, this guide can be used as a reference point allowing the 
reader to modify the flow to achieve their goals.  A common request from users is 
the ability to enable or disable the processor caches for specific regions of memory 
and, less frequently, to control the caching mode from a write-through / write-back 
perspective.  The objective of this guide will therefore be to create some custom 
software functions which will allow the user to control these features quickly and 
easily from a user application.  To enable re-use and ease of use of the solution, this 
guide will also discuss how to create a custom Xilinx SDK library which will enable the 
new functionality to subsequently be added to any standalone board support 
packages with just a few clicks of the mouse. 
 

The Hard Theory 

Before any code can be written we must first explore the technical documentation for 
the processor cores within the Zynq 7000 series devices, and use it to clearly 
understand how the cache controllers and MMUs operate.  The first port of call is the 
Xilinx Zynq Technical Reference Manual (UG585); Users would be forgiven for 
assuming that caching modes would be discussed in the cache controller section of 
the documentation, however this is not the case.  An example of this can be seen in 
chapter 3.4, which discusses the operation of the Level 2 cache and describes the 
various write-back / write-allocate / write-through modes.  Even though the L2 cache 
controller supports all of the functionality that we wish to control, there is no 
guidance on how these features are controlled from the cache controller.  Further 
investigation reveals that this is not an oversight but is correct behaviour because 
the L2 cache controller simply accepts requests from the memory management unit, 
and processes them according to the type of memory access that has been 
requested.  Although the L2 Cache controller can be configured to selectively lock the 
cache arrays to a specific CPU core, the control of the caching modes (i.e. for 
cacheable / non-cacheable / write-back / write-through) are determined by the 
memory management unit.   Our focus must therefore move to chapter 3.2.5 of the 
Technical Reference Manual, which discusses the various features that are available 
and explains that they are all controlled by configuration entries which are located in 
“translation tables” in a known area of main memory.  The term translation table 
comes from the previously discussed capability for the MMU to map (translate) 
virtual memory addresses to physical memory addresses.  This functionality is often 
seen when an operating system is used; each user application is compiled and linked 
with the assumption that it is the only task running on the processor, whereas in 
reality multiple software applications are running and are given access to the 
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processor’s execution time by way of scheduler that is built into the OS kernel.  A 
critical point of understanding is that multiple software applications try to reference 
memory at the same address locations because they are all compiled and linked in 
the same way, and have no knowledge of each other.  If no memory translation 
were to take place in the processor, an application could potentially interfere with 
another because they all reference the same addresses in memory.  The MMU solves 
this problem by fooling the applications into believing that they are accessing the 
memory addresses that they request, but then translate the addresses in such a way 
that each user application has its address space mapped to a different location in 
physical memory.  This explains the basic concepts of virtual memory (which is what 
the user application sees), and physical memory (which is what the processor 
hardware sees).  In the example of an operating system, these mappings of memory 
space from the virtual to physical addresses may need to constantly change as new 
applications are loaded and closed, so the translation tables are held in a “soft” 
format in main memory.  This dedicated “soft” region of memory is known as the 
translation table or page table, and is usually controlled by the operating system’s 
kernel. 
 
Now that the basic theory of address translation is understood, it is also important to 
consider that not all user applications require the same amount of memory in order 
to execute.  The mapping of virtual to physical addresses must occur with enough 
flexibility to cater for both small and large applications, but without wasting physical 
memory in the embedded system.  To achieve this, Memory Management Units 
usually permit various different sizes of memory regions to be allocated for address 
translation, and these regions are often known as “sections” or “pages”.  To offer 
maximum flexibility, the MMU in the Zynq 7000 series Cortex A9 processor allows 
four different sizes of these regions to be controlled.  These are discussed in the 
Technical Reference Manual and are known as 4KB and 64 KB “pages”, 1MB 
“sections”, and 16MB “super-sections”.  The translation table / page table is 
therefore simply a list of the various memory regions, details of their virtual to 
physical address mappings, and whether they have any special attributes or 
behaviours such as “cacheable”, “non-cacheable”, “sharable”, “read-only”, or not 
executable (known as “execute never”).  There are trade-offs to be made here; 
smaller pages give the user finer granularity of memory, and therefore need more 
memory to be devoted to a larger page table, whereas larger sections or super-
sections offer coarse granularity of memory but the amount of memory required to 
store the page tables is smaller.  For very fine grain control of memory, a concept 
exists whereby two different pages tables are used in unison; Level 1 and Level 2 
page tables.  Level 1 page tables (coarse grain) can point to either large sections of 
memory, or optionally to entries in a Level 2 page table (fine grain).  This latter 
usage of Level 2 page tables allows very detailed and fine grain control of the 
memory, but this is beyond the scope of this guide.  It should be noted that even 
this lengthy description is still a very simplistic view of the operation and capabilities 
of the MMU, but it is adequate for the purposes of this guide. 
 
For our purposes, we will be keeping things relatively simple by defining the 
behaviour of memory which we shall divide into 1MB sections.  A Level 1 page table 
is sufficient to achieve this level of granularity, and therefore we shall be concerning 
ourselves with a page table that has 4096 entries, which in turn gives control over 



 

Page 5 

Controlling the Zynq MMU / Caches using a custom Xilinx SDK Library 
Version 1.0, July 2014  --  Rich Griffin, Silica EMEA  

 

the entire 4GB address space (4096 * 1MB).  The full details of the Level 1 page 
tables can be found in Figure 3-5 of the Zynq Technical Reference Manual.  Level 1 
page tables can contain four different types of page table entries, each type being 
denoted by the binary encodings in bits 1:0 of the table entry, but we are concerned 
with the 1MB “section” entry which is highlighted below. 
 

 
 
The first key point of understanding to learn from this table is that the highlighted 
area shows one of 4096 similar entries which are all described in the Level 1 page 
table.  The location of the entry in the page table denotes which area of physical 
memory it controls.  The first entry in the table therefore controls the behaviour of 

the first 1MB section of memory at physical addresses 0x00000000  0x000FFFFF, 
the second entry in the table controls the second 1MB section at physical addresses 

0x00100000  0x001FFFFF, and so on until the last table entry (i.e. the 4096th) 
which controls physical addresses 0xFFF00000  0xFFFFFFFF.  In the Zynq 7000 
series devices we have a DDR memory controller which covers 1GB of memory space 

and is located at addresses 0x00000000  0x3FFFFFFF (Note: The OCM can also 
optionally be mapped to some of this memory region, but this is a topic beyond the 
scope of this guide).  Therefore the first 1024 entries in the Level 1 page table 
control how the DDR behaves (1024 * 1MB). 
 
Each entry in the Level 1 page table has a number of attributes which we must 
understand in order to control the behaviour of the memory in that section.  The 
upper 12 bits of the entry (bits 31:20) control the base address of the 1MB virtual 
address region that maps into the physical address space.  We will keep things 
simple by not introducing any address translation for the purposes of this guide (i.e. 
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virtual addresses will be the same as physical addresses).  Therefore the upper 12 
bits of the table entry are always the same as the 12 bits of the offset of the page 
table entry’s address (i.e. 0x000000 for the first entry, 0x100000 for the second, 
0x200000 for the third, and so on).  Bits 1:0 of each page table entry will always be 
“10” because this is the coding which tells the MMU that the page table entry refers 
to either a 1MB “section” or 16MB “super-section”.  Bit 18 of the entry is always “0” 
because that denotes that the table entry is for a 1MB “section” rather than a 16MB 
“super-section” (super-sections would be denoted by a “1” in this bit).  The 
remaining bits control how the memory in that region behaves, and are explained in 
the Technical Reference Manual in the sub-chapter entitled “Description of Page 
Table Entry Fields”.  This behaviour is summarised briefly below. 
 

Bit Name Description 

NS 
(Bit 19) 

Always set to “0”. 

nG 
(Bit 17) 

Non Global bit.  Denotes that this entry in the page table only 
applies to the associated “ASID” (Address Space IDentifier).  This is 
an advanced feature used by operating systems and allows the OS 
to create a page table entry that is only specific to one task that is 
running under the OS.  This topic is beyond the scope of this guide, 
but we will leave the settings as “global”; thus nG=0. 

S 
(Bit 16) 

Sharable bit.  Denotes whether the memory can be shared by more 
than one master (i.e. CPU).  We will be allocating memory as 
sharable, thus S=1. 

AP 
(Bit 15 and Bits 

11:10) 

Access Permission bits.  Denotes whether the memory is Full 
access, read only, privileged access, or completely inaccessible by 
the CPU.  See table 3-2 of the TRM. This topic is beyond the scope 
of this guide, but we will be assigning “Full Access” permissions to 
the DDR, thus AP[2:0] = “011”. 

TEX 
(Bits 14:12) 

These bits are used in combination with the C & B bits, and denote 
the behaviour of “ordered” memory, including the caching modes.  
See Table 3-3 and 3-4 of the TRM, discussed below. 

Domain 
(Bits 8:5) 

Controls to which of 16 possible domains the page table entry 
belongs.  Domains can be used to control the behaviour of a 
number of page table entries in a single group.  Permissions 
assigned to a domain then apply to all page table entries assigned 
within that domain.  This topic is beyond the scope of this guide, 
but we will be assigning all of the page table entries for the DDR to 
the “1111” domain. 

XN 
(Bit 4) 

Execute Never bit.  This denotes that the processor cannot execute 
from the section of memory described by the page table entry.  This 
can be a useful feature when writing software with a security focus, 
for example to prevent execution from certain areas of memory 
which could be targeted by hackers by way of a buffer overflow 
attack.  We will be permitting execution; thus XN=0. 

C and B 
(Bits 3:2) 

These bits control the caching mode, and are used in combination 
with the TEX bits.  See Table 3-3 and 3-4 of the TRM, and also 
discussed in detail below. 
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Our goal is to control the caching mode of the DDR memory in various 1MB regions 
of the memory map.  Using this analysis of the Level 1 page table entries, we can 
see that our focus must be on the “TEX”, “C”, and “B” bits.  Table 3-3 and Table 3-4 
from the TRM provide us with further guidance on the precise settings, and are 
reproduced below for clarity. 
 

 
 
The DDR memory is regarded as being “Normal” memory type, and we are trying to 
control just the caching modes.  We shall therefore be using the combination of bits 
described on the last row of Table 3-3 where TEX(2) = 1, and TEX(1:0) are always 
set to match the C & B bits described in Table 3-4.  Note that although TEX(1:0) is 
derived from the values of C & B, we must also set the values of C & B in their own 
bit positions.  
 
Our required encoding for the TEX, C, and B bits are therefore as follows: 
 

Caching mode TEX[2] TEX[1] TEX[0] C B 

Non-cacheable 1 0 0 0 0 

Write-back, write-allocate 1 0 1 0 1 

Write-through, no write-allocate 1 1 0 1 0 

Write-back, no write-allocate 1 1 1 1 1 

 
So by way of an example; let’s imagine that we want to create a page entry which 
controls the first 1MB of the DDR memory space (i.e. the first page table entry, 

controlling physical addresses 0x00000000  0x000FFFFF). 
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For this example we will assume the following settings: 

 Create a page table entry for a 1MB “Section” 
 Global scope (nG=0) 
 Sharable memory (S=1) 
 Full Access Permissions (AP[2:0] = “011”) 
 Write-back / Write-allocate caching mode (C=0, B=1, TEX[2:0] =”101”) 
 Domain = “1111” 

 Execution is permitted (XN=0) 
 
31:24 23:20 19 18 17 16 15 14:12 11:10 9 8:5 4 3 2 1 0 

Section Base 

Address (PA) 

[31:20] 

NS 0 nG S AP[2] TEX[2:0] AP[1:0] 0 Domain XN C B 1 0 

0x000000 0 0 0 1 0 101 11 0 1111 0 0 1 1 0 

 
So the value that we must write to the first entry in the page table is 0x15DE6. 
 
By now it is probably very clear why this is an undesirable process to perform 
manually each time!  Having a software function to automate these calculations 
would be of huge benefit to software developers, will reduce the possibilities of 
human error, and will save a lot of development time. 

Let’s Write Some Software 

The starting point of almost all software design is to assess what has already been 
written by somebody else.  The world is arguably full of software code, and there is 
seldom any point in “re-inventing the wheel” unless there’s an extremely good 
reason to do so.  In the case of our example we are writing some additional C code 
to compliment the Standalone / Bare-metal Board Support Package (BSP) that is 
supplied with the Xilinx SDK tools.  A quick look at the Xilinx BSP reveals that there is 
a supplied header file for MMU operations called “xil_mmu.h”.  Looking inside that 
header file we find a function which is designed to update the MMU page tables: 
 

void Xil_SetTlbAttributes(u32 addr, u32 attrib); 

 
The “TLB” part of the function name is an abbreviation for “Translation Look-Aside 
Buffer”.  We have already discussed the purpose of the page tables which list how 
each region of memory behaves and also describes the mapping between the virtual 
physical address space.  One of the functions of the MMU hardware is to keep a local 
copy of the most recent translation table look-up operations (and thus avoiding 
additional external memory accesses), and so the purpose of the TLB is essentially a 
cache of the page tables.  When the required translation for a memory region is not 
already present in the TLB, the MMU accesses the page tables which are stored in 
memory to fetch the page table entry that is relevant to the memory region.  This is 
known as “page table walking”.  Setting a TLB attribute using this function is 
therefore a way of updating not just the page table, but also the cached TLB entry so 
that it can be immediately used by the software.  In actual fact, the function updates 
the cached version of the page table in the TLB, and then flushes the caches to write 
the new page table back to external DDR. 
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We can see from the function prototype that two variables must be passed in to the 
function; the address of the memory region, and the attributes that are to be 
assigned.  The “addr” field is easy, and simply represents the first address in the 
1MB region of memory.  The “attrib” field is the hexadecimal values that we 
calculated in our previous example.  So in summary, there is a supplied function to 
update the MMU page tables / TLB, but not one which makes the process intuitive or 
easy to use. 
 
Our goal is therefore to write a function which makes life easier for the software 
developer, by removing the need to manually calculate the hexadecimal value that 
will be passed into the existing function.  One way of doing this is to create a series 
of enumerated #define values which represent each of the bit values in the page 
table entry.  For example, we saw previously that the “sharable” bit (Bit 16) can be 
set when we want to enable that behaviour for a region of memory.  The assertion 
of just bit 16 in a 32 bit word has a hexadecimal equivalent value of 0x00010000.  
We can therefore assign an intuitive enumerated name to this bit by creating a 
macro in C using the #define syntax. 
 

#define SHAREABLE 0x10000  // S = b1 
 

Theoretically, we can now set the “sharable” bit for an MMU page table by passing 
that macro into the supplied function from the BSP.  So for the first 1MB region of 
DDR memory in a Zynq-7000 device, we could use: 
 

Xil_SetTlbAttributes(0x00000000, SHARABLE); 

 
Theory is fine, but this is clearly not going to work in practice because we have not 
set the rest of the bits in the page table entry to valid values.  In fact we have 
cleared all of the other bits, and asserting just Bit 16 is not going to get us anywhere 
on its own!  So to make this work we need to assign macros to the remainder of the 
bits in the page table entry.  Some of them are easy (e.g. when the macro refers to 
a single bit, as shown above) but some of them must be combinations of different 
bits.  For example, we previously saw that to enable Write-back / Write-allocate 
caching mode, we should set the “C” bit to 0, set the “B” bit to 1, and set the 
TEX[1:0] field to “01” (Note: TEX[2] = 1 for “Normal” memory types, so we needn’t 
ever change it.  We will therefore worry about controlling this bit later on).  The 
combination of these bits can be represented in the same way as we did before, and 
a macro can be created: 
 

31:24 23:20 19 18 17 16 15 14:12 11:10 9 8:5 4 3 2 1 0 

Section Base 

Address (PA) 

[31:20] 

NS 0 nG S AP[2] TEX[2:0] AP[1:0] 0 Domain XN C B 1 0 

- - - - - - -01  - - - - 0 1 - - 

 
So the hexadecimal value which represents this caching mode is 0x1004. 
 

#define WRITEBACK_WRITEALLOCATE  0x1004  // TEX(1:0) = b01, C = b0, B = b1 

 



 

Page 10 

Controlling the Zynq MMU / Caches using a custom Xilinx SDK Library 
Version 1.0, July 2014  --  Rich Griffin, Silica EMEA  

 

Using an identical process, we can assign a complete set of macros for the rest of 
the settings on the MMU.  The following list also includes macros to represent some 
of the MMU access permission bits, although we did not discuss these in detail. 
 

#define NON_CACHEABLE 0x00  // TEX(1:0) = b00, C = b0, B = b0 
#define WRITEBACK_WRITEALLOCATE  0x1004  // TEX(1:0) = b01, C = b0, B = b1 
#define WRITETHROUGH_NO_WRITEALLOCATE 0x2008  // TEX(1:0) = b10, C = b1, B = b0 
#define WRITEBACK_NO_WRITEALLOCATE 0x300C  // TEX(1:0) = b11, C = b1, B = b1 
#define NON_GLOBAL 0x20000  // nG = b1 
#define EXECUTE_NEVER 0x10  // XN = b1 
#define SHAREABLE 0x10000  // S = b1 
#define AP_PERMISSIONFAULT 0x00  // AP(2) = b0, AP(1:0) = b00 
#define AP_PRIVIEGED_ACCESS_ONLY 0x400  // AP(2) = b0, AP(1:0) = b01 
#define AP_NO_USERMODE_WRITE 0x800  // AP(2) = b0, AP(1:0) = b10 
#define AP_FULL_ACCESS 0xC00  // AP(2) = b0, AP(1:0) = b11 
#define AP_PRIVILEGED_READ_ONLY 0x8800  // AP(2) = b1, AP(1:0) = b10 

 
These macros are usually added to a header file for easy re-use.  In our case we will 
create a header file called “mmu_control.h”, and add it to the source files in the 
Xilinx SDK software application project. 
 
The last part of the puzzle is to also calculate a hexadecimal value for the bits in the 
page table entries which never change.  We saw previously that the “NS” bit is 
always 0, TEX[2] is always 1, Bit 18 and Bit 9 are fixed at 0, the “Domain” bits are 
always set to “1111”, and Bits [1:0] representing the page table entry type are 
always set to “10”. 
  
31:24 23:20 19 18 17 16 15 14:12 11:10 9 8:5 4 3 2 1 0 

Section Base 

Address (PA) 
[31:20] 

NS 0 nG S AP[2] TEX[2:0] AP[1:0] 0 Domain XN C B 1 0 

- 0 0 - - - 1--  - 0 1111 - - - 1 0 

 
So the hexadecimal value representing the fixed bits is 0x41E2. 
 
Using this information we can now develop a software function that will calculate the 
appropriate attributes to be passed into the supplied Xil_SetTlbAttributes() function 
in the Xilinx BSP.  An example of such a function is show below, which we will place 
in a new C source file called “mmu_control.c”: 
 

int adjust_mmu_mode(unsigned int start_of_1MB_address_region, unsigned int features) 
{ 
 unsigned int mmu_attributes = 0; 
 
 /* Declare the part of the page table value that gets written to the */ 

/* MMU Table, which is always fixed. */ 
 /* NS = b0, Bit 18 = b0, TEX(2) = b1, Bit 9 = b0, Domain = b1111, */ 

/* Bits(1:0) = b10 ... Equivalent hex value = 0x41e2 */ 
 const unsigned int fixed_values = 0x41e2; 
 
 // Calculate the value that will be written to the MMU Page Table 
 mmu_attributes = fixed_values + features; 
 
 // Write the value to the TLB 
 Xil_SetTlbAttributes(start_of_1MB_address_region, mmu_attributes); 
 
 return (0); 
} 
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Calling this function from a user’s software application is now an extremely simple 
task, and does not require the software developer to remember any of the 
complicated bit positions related to the MMU page table.  For example, if the 
developer wants to set the region of memory starting at address 0x20000000 to be 
non-global, non-cacheable, and have access permissions in “privileged mode” only, 
then they simple pass those macros into the function: 
 
adjust_mmu_mode(0x20000000, NON_GLOBAL+NON_CACHEABLE+AP_PRIVIEGED_ACCESS_ONLY); 

 

The chances of making a human error with this approach is drastically reduced, and 
the software developer wastes no time by performing the calculations manually.  In 
the event of a software update in later years, this code is also considerably easier to 
read and understand. 
 
A prototype for this function is created in a header file (mmu_control.h), and this will 
be used later. 

Packaging the Code Into a Library 

From a software coding perspective, we now have a working solution which could be 
manually added to future software projects.  However, there are source files which 
must be copied to the correct directories, and each project would need to be 
manually updated if updates or bug-fixes were made.  It would be a much nicer 
solution if we could add our MMU control functionality to other projects in the form 
of a library, allowing future users to access the software functions without copying 
raw C code from project to project. 
 
Fortunately the Xilinx SDK framework allows us to achieve this task quite simply.  To 
package code into a library requires that we create a known directory structure and 
also a few control files.  We will explore these requirements in detail. 
 
The Directory Structure 

The first requirement of a Xilinx software library 
is to place the source files into a known and pre-
defined directory structure on the user’s 
workstation.   Readers with experience of 
creating custom processor peripherals and drivers 
may already be familiar with the 
“MyProcessorIPLib” folder containing “pcores” 
and “drivers” sub-directories.  Custom libraries 
are placed in the same directory structure, but 
under a sub-directory called “sw_services”.  
Inside the sw_services directory we can create 
any number of directories, each of which 
represent a unique software library.  In the case 
of the example shown, we have created a library 
called “zynq7_mmu_control_v1_0”; note that we have optionally included a version 
number using the “v1_0” notation.  Beneath each library folder, two additional 
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folders must be added; “data” which contains some important control files, and “src” 
which contains the source files for the library.  The “src” directory can optionally 
contain sub-directories, and in our example we have placed our header file in the 
“src/include” directory.  Two further directories can optionally be created in each 
library; the “doc” directory which can contain documentation for the library, and the 
“example” directory which can contain example software applications demonstrating 
use of the library. 
 
The MLD file 

The next requirement for a custom software library is a control file called the 
Microprocessor Library Definition file (MLD).  This definition file must be placed in the 
“data” directory, and must have the suffix <library_name>.mld .  In our example we 
have created a file called “zynq7_mmu_control.mld”.   

 
The contents of the file are fairly simple, and start with a line that describes which 
version of the file syntax is being used (known as the “Platform Specification 
Format”).  At the time of writing, the latest version is 2.1 and this is denoted using 
the syntax “OPTION psf_version = 2.1”.  The remainder of the text in the MLD is 
enclosed within the “BEGIN LIBRARY” and “END LIBRARY” lines, the first of which 
also features the name of the library and matches the file name and directory name, 
“zynq7_mmu_control”.  The majority of the MLD file syntax rarely changes from the 
default values, so the file contents shown above can be used as a starting point for 
custom libraries.  The syntax is simply a list of parameters which are prefixed by the 
keyword “OPTION”, and the various parameters are explained in the table below. 

OPTION psf_version = 2.1; 

 

BEGIN LIBRARY zynq7_mmu_control 

  OPTION drc = zynq7_mmu_control_drc; 

  OPTION copyfiles = all; 

  OPTION REQUIRES_OS = (standalone); 

  OPTION SUPPORTED_PERIPHERALS = (cortexa9); 

  OPTION APP_LINKER_FLAGS = "-Wl,--start-group,-lzynq7_mmu_control,-

lxil,-lgcc,-lc,--end-group"; 

  OPTION desc = "Zynq 7 MMU Control"; 

  OPTION VERSION = 1.0; 

  OPTION NAME = zynq7_mmu_control; 

END LIBRARY 
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Option Description 

DRC 
Design Rule Check.  The name of a procedure in an associated TCL file 

which performs DRC functionality.  This is discussed later. 

COPYFILES 

Tells the Xilinx SDK library generation tools which of the source files 

should be copied into the source file tree of the board support package 

(BSP).  In most cases this parameter can be set to “all”, to copy all 

source files into the BSP. 

REQUIRES_OS 

Tells the Xilinx tools that this library is dependent on another BSP.  In 

our example, we are adding additional functionality to the “standalone” 

BSP (also known as “bare metal” BSP). 

SUPPORTED_PERIPHERALS 

Some libraries might only be applicable to a specific piece of hardware 
in the embedded design.  In our example we are writing functions which 

can only work with the Cortex A9 processor, so the library will only be 

compiled when that hardware is included in the design.  If a MicroBlaze 
soft processor design were to be created, this library would not be 

available for the user to select.  Another example of dependencies 
would be a library targeting Ethernet interfaces, and therefore should 

not be compiled into the BSP unless an Ethernet MAC was present in the 

design. 

APP_LINKER_FLAGS 

When software applications are compiled, the user is usually responsible 

for adding the “-l” switch to the compiler command line.  This switch 

tells the compiler to include pre-compiled functions from a named 
library.  This parameter allows the author of a library to have the –l 

switch added automatically to the compiler command line for any 

software applications that are created.  In the case of our example we 
must add “-lzynq7_mmu_control”, the name of our library. 

DESC 
Library description.  This is a free text field containing a string that will 

be displayed in the BSP Settings of the Xilinx SDK GUI. 

VERSION 

The version number of the library.  If multiple libraries exist in the 

directory structure with the same name but different version numbers, 
the Xilinx SDK GUI will present a way for the user to choose which 

version of the library they wish to use in their BSP. 

NAME 
The name of the library.  This matches the name of the library directory 

and the prefix of the MLD filename; “zynq7_mmu_control”. 

MLD files can also optionally contain user parameters which are denoted by the 
keyword “PARAM”.  The library in our MMU control example contains no parameters, 
but an example of the syntax is shown below for the purposes of completeness. 

PARAM name = extra, desc = "Add extra functions?", type = bool, default = false ; 

The purpose of a user parameter is to introduce flexibility into the library.  In the 
very simple example shown above, a Boolean switch is implemented in a user 
parameter to allow the end user to control whether advanced functions should be 
compiled into the library. 
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From the end user’s perspective, parameters are displayed in the Xilinx SDK GUI 
using additional menus which appear in the Board Support Package settings.  User 
parameters can be useful in situations where, for example, it might be desirable to 
keep the compiled size of the library small unless the user required certain functions.  
User parameters are analysed and acted upon by the associated TCL script which, in 
the case of this example, could selectively decide which source files to compile into 
the library.  User parameters are not limited to Boolean true/false data types; 
parameters could also capture other data types from the Xilinx SDK GUI such as 
integer values, or drop down box choices. 

 
The TCL file 

At the heart of a custom software library is a TCL script which executes when the 

library is included for compilation in the BSP settings.  The TCL script allows 

advanced functionality to be implemented as part of the build process, and is limited 

only by the imagination of the library creator.  Source files can be selectively copied, 

moved, or even updated by the TCL script to include or remove functionality, 

parameters can be adjusted in header files, and messages can be printed to the 

console.  If the author of the library has included user parameters as part of their 

MLD file, these parameters can be used to make decisions within the TCL script.  

 
In this example we can see that the first procedure in the TCL file is a design rule 
check (DRC) called “zynq7_mmu_control_drc”.  This procedure name matches the 

proc zynq7_mmu_control_drc {libhandle} { 

 puts "Running DRC for Zynq7_MMU_Control library... \n" 

} 

 

proc generate {libhandle} { 

} 

 

proc post_generate {libhandle} { 

 xgen_opts_file $libhandle 

} 

 

proc execs_generate {libhandle} { 

} 

 

proc xgen_opts_file {libhandle} { 

 # Copy the include files to the include directory 

 set srcdir [file join src include] 

 set dstdir [file join .. .. include] 

 

 # Create dstdir if it does not exist 

 if { ! [file exists $dstdir] } { 

  file mkdir $dstdir 

 } 

 

 # Get list of files in the srcdir 

 set sources [glob -join $srcdir *.h] 

 

 # Copy each of the files in the list to dstdir 

 foreach source $sources { 

  file copy -force $source $dstdir 

 } 

} 
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line in the associated MLD file, denoted by the “DRC” parameter.  In this example 
the procedure does nothing more than print a line of text to the console in the Xilinx 
SDK, but the syntax of the procedure could implement any number of more 
advanced features if required. 
 
Other procedures in the TCL file have reserved names, and these procedures are 
required by the Xilinx SDK tools.  The “generate” procedure is called after library files 
are copied from their source folder into the BSP, the “post_generate” procedure is 
called after the “generate” has been called on all operating systems / drivers / 
libraries in the design, and the “execs_generate” procedure is called after all of the 
BSPs / libraries / drivers in the design have been generated.  This system of pre-
defined procedures allows the authors of libraries to implement a wide range of 
functionality at every stage of the software compilation process, even if the user 
library depends upon sources created and built outside of the custom library.  In the 
case of this example, the only procedure to be populated with any code is the 
“post_generate” procedure, which calls an additional user-written procedure called 
“xgen_opts_file”. 
 
To re-cap; our “src” directory contains a single C source file (mmu_control.c) which 
contains the “adjust_mmu_mode” software function that we wrote earlier.  We also 
created the mmu_control.h header file which contains all of the macros (#define 
statements) and the prototype for our custom function, and this was placed in the 
“src/include” directory.  The “xgen_opts_file” procedure checks for the existence of a 
destination directory, creating it if necessary, and then copies each of the source files 
into the correct destination directory within the BSP. 
 
The Makefile 

The last control file is the Makefile, which is located in the “src” directory.  Makefiles 

are common in software compilation flows, running the compiler tools to build output 

files based on dependencies.  It is beyond the scope of this document to fully 

document the operation of a Makefile; extensive documentation is available at 

https://www.gnu.org/software/make/manual/make.html but we shall discuss the 

basics as an aid to understand the required changes to this file. 

Makefiles operate on a principle of “rules”, and each rule has “targets” and 

“dependencies”.  Each rule has a header line which is formed of one or more 

keywords separated by a colon “:” character.  The Makefile syntax uses a target 

before the “:” character, and a dependency after the “:”.  Immediately following this 

line is the “recipe” that creates the target.  Another way to consider a “dependency” 

is to consider it as a “prerequisite” that must already be in place before the rule can 

execute. 

target ... : dependency ... 

             recipe starts here 

             commands and operations 

             ... 

  

https://www.gnu.org/software/make/manual/make.html
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The contents of a Makefile can be executed from the command line simply by typing 

“make”, and the tools will look for a default makefile called “makefile” (with no file 

extension) in the current working directory.  The first rule that is found in the file 

(e.g. “libs”) is the first to be executed.  Alternatively rules can be executed 

individually from the command line using the command “make <target_name>”.  

Let’s begin by reviewing a simple rule. 

libs: libzynq7_mmu_control.a 

 cp libzynq7_mmu_control.a $(RELEASEDIR) 

 make clean 
 

 

Here we can see that we have a target called “libs”.  The target doesn’t output a 

specific file per se, but the rule is dependent on the existence of a file called 

“libzynq7_mmu_control.a”.  The target is created / achieved by executing two lines 

in the recipe; the first of which is a simple copy command (cp) which copies the 

COMPILER= 

ARCHIVER= 

CP=cp 

COMPILER_FLAGS= 

EXTRA_COMPILER_FLAGS= 

 

RELEASEDIR=../../../lib 

INCLUDEDIR=../../../include 

INCLUDES=-I${INCLUDEDIR}  

ZYNQ7_MMU_CONTROL_DIR = . 

                

LIB_SRCS = $(ZYNQ7_MMU_CONTROL_DIR)/mmu_control.c 

 

ZYNQ7_MMU_CONTROL_SRCS = $(LIB_SRCS) 

 

ZYNQ7_MMU_CONTROL_OBJS = $(ZYNQ7_MMU_CONTROL_SRCS:%.c=%.o) 

 

 

EXPORT_INCLUDE_FILES = $(ZYNQ7_MMU_CONTROL_DIR)/include/mmu_control.h 

 

libs: libzynq7_mmu_control.a 

 cp libzynq7_mmu_control.a $(RELEASEDIR) 

 make clean 

 

include: 

 @for i in $(EXPORT_INCLUDE_FILES); do \ 

 echo ${CP} -r $$i ${INCLUDEDIR}; \ 

 ${CP} -r $$i ${INCLUDEDIR}; \ 

 done 

 

clean: 

 rm -rf obj/*.o 

 rmdir obj 

 rm libzynq7_mmu_control.a 

 

libzynq7_mmu_control.a: obj_dir print_msg_isf_base $(ZYNQ7_MMU_CONTROL_OBJS) 

 @echo "Creating archive $@" 

 $(ARCHIVER) rc $@ obj/*.o 

 

obj_dir: 

 mkdir obj 

 

print_msg_isf_base: 

 @echo "Compiling Zynq7_MMU_Control Library" 

 

.c.o: 

 $(COMPILER) $(COMPILER_FLAGS) $(EXTRA_COMPILER_FLAGS) $(INCLUDES) -c $< -o obj/$(@F) 
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“libzynq7_mmu_control.a” file to a directory denoted by the variable “RELEASEDIR”.  

Variables can be referenced by the use of a dollar ($) character and then the name 

of the variable in round brackets.  The second line of the recipe executes another 

Makefile rule called “clean”.  The variable “RELEASEDIR” was declared and assigned 

further up in the Makefile. 

A considerably more complex rule is shown at the bottom of the Makefile.  This is a 

more sophisticated rule and uses a variety of advanced syntax features. 

.c.o: 

 $(COMPILER) $(COMPILER_FLAGS) $(EXTRA_COMPILER_FLAGS) $(INCLUDES) -c $< -o obj/$(@F) 

The target name denotes a special case which is known as a “suffix rule”.  In 

essence, this type of rule creates wildcard targets of object files (.o) from C source 

files (.c).  So the target “example.o” would be created by the recipe using the source 

file of the same prefix name “example.c” and, similarly, “my_code.o” would be 

created from “my_code.c”.  The recipe executes the command $(COMPILER) which 

in our case would be the GCC compiler, using compiler flags listed in the variables 

$(COMPILER_FLAGS) and $(EXTRA_COMPILER_FLAGS), specifying the include file 

switch (-I) from the variable $(INCLUDES).  The “-c” switch instructs the compiler to 

compile the sources into object files but not link them into an executable, and the “-

o” switch tells the compiler to output the object file(s) into a directory called “obj” 

and into filenames denoted by “$(@F)”.  The “$/<” syntax denotes the name of the 

first dependency, which in the case of our suffix rule example is the name of the .c 

source file that is to be compiled.  In the interests of completeness, “$(@F)” is 

another special item of Makefile syntax which is called an “Automatic Variable”.  

Specifically, the “@F” denotes the name of the file in the target name, whereas “$@” 

would be the name of the target itself.  This Makefile is sadly even more confusing 

because variables $(COMPILER), $(ARCHIVER), $(COMPILER_FLAGS and 

$(EXTRA_COMPILER_FLAGS) are apparently all declared but have no values.  This is 

because their values get inherited from another Makefile that is built into the Xilinx 

SDK tools, and which calls our user Makefile.  This is done to make the compilation 

of our library flexible enough to be compatible with different compilers (ARM Cortex 

A9, PowerPC 405, Microblaze, etc). 

In summary, the use of these Makefile features allows any number of C source files 

to be added to the “src” directory, and they would all automatically be compiled into 

object files (.o) using the correct compiler settings which are provided by the Xilinx 

SDK.  To edit this Makefile for our custom library, we simply had to update the 

makefile in a few places: 

 Edit the “LIB_SRCS” variable to list the source files in our library. Separated by 

spaces, as necessary. 

 Update the filename of the archived library, in our case 

“libzynq7_mmu_control.a”. 
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 Update some of the variable names to reflect the name of our custom library, 

e.g. ZYNQ7_MMU_CONTROL_DIR, ZYNQ7_MMU_CONTROL_SRCS, and 

ZYNQ7_MMU_CONTROL_OBJS. 

 List the names of our custom header files in the EXPORT_INCLUDE_FILES 

variable.  (e.g. “mmu_control.h”) 

 Change the string that is printed to the console during compilation (e.g. 

“Compiling Zynq7_MMU_Control Library”). 

Testing and Using the Custom Library 

Before any custom library can be used in the Xilinx SDK, it is important to configure 

the SDK so that it can locate custom libraries.  Many readers of this guide will be 

familiar with configuring the SDK to look for user repositories containing custom 

drivers, and this is precisely the same flow.   

In the SDK, open the 

“Preferences” dialogue by 

choosing “Window  

Preferences” from the menu 

bar.  Select the “Xilinx SDK 

 Repositories” pane, as 

shown in the screenshot. 

Add a new repository to the 

list by clicking the “New...” 

button next to the right of 

the “Global Repositories” 

list, and point to the folder 

that you created for your 

custom library.  The folder 

you must choose here 

should be the level of the 

file system above the 

“MyProcessorIPLib” folder.  

The folder structure is 

critical when defining the 

location of a global repository, and the directory names “MyProcessorIPLib” and 

“sw_services” are reserved and required.  Click the “Rescan Repositories” button, 

followed by “OK”.  This setting will provide visibility of your custom library to the SDK 

tool, and will enable your library to be selected in the BSP settings.  There is an 

addition list shown on this screen called “Local Repositories”; this performs an 

identical function to adding the library to the “Global Repositories” list, with the 

exception that the library will only be visible to the current SDK workspace rather 

than having global scope across all workspaces.  The purpose of a custom library is 
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to allow the same software functions to be used across many projects, so the use of 

a global repository is more useful than a local one in most cases where custom 

libraries are created. 

The setup for the library is complete and we can now check to make sure that the 

custom library appears in the GUI for the Standalone BSP Settings.  In the Xilinx 

SDK, either create a new BSP or right-click an existing one and choose “Board 

Support Package Settings”.  In the “Overview” tab of the BSP settings you will now 

be able to select your new library to include it in the BSP.  Just tick the box. 

 

 The BSP will automatically re-compile and in the 

“include” directory you will see that the custom 

header file (mmu_control.h) has been added to the 

list of other BSP header files. 

That’s it!  The custom library can now be used in any 

software application projects by “including” it, just like 

any other header file from the BSP. 

#include “mmu_control.h” 

A set of resource files is provided with this document 
as a reference, including the custom library created in 
the example described. 


