=SILICA

An Avnel Company

Controlling the Zynqg MMU / caches
using a custom Xilinx SDK library

Version 1.0 - Vivado 2014.2

Rich Griffin
Xilinx Embedded Specialist, Silica EMEA

SILICA | The Engineers of Distribution %‘S’L!‘A
n Avnet Company

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

Introduction

The default settings provided by Xilinx in the SDK for the Zynq devices and Cortex A9
processors will be sufficient for a large number of designs to function perfectly
without any additional intervention. However it is often desirable for the user to take
greater control of the settings on the processors to either boost performance in their
designs, or to take advantage of specific features. One such example of a details
processor setting is the control of the caches and Memory Management Unit (MMU).
This guide shows how to control the various cache / MMU features using run time C
code, and also explores how to integrate that functionality into a custom Xilinx SDK
library for easier access and to facilitate design re-use.

The Basics

Just like many application processor units, the Cortex A9 has some highly advanced
features which enable users to achieve higher performance from their embedded
products. Specifically, the Zyng 7000 series SoC devices are equipped with Level 1
and Level 2 caches, and an advanced Memory Management Unit (MMU). Caches are
arrays of local memory situated close to the processor core which keep a local copy
of smaller sections of main (external) memory. Accesses to external DDR memory in
all processor systems can be slow and require many cycles of latency for each fetch
and store instruction. Having a local copy of instructions and user data enables the
processor to execute code much faster, by removing the need to access external
devices for every executed processor instruction. The cache controllers use
sophisticated algorithms to automatically fetch and locally store regions of the
external DDR memory which are likely to be needed by the processor. Greater
control of these algorithms is often desirable, for example if the user wants to control
the caches to devote half of the cache array to a specific processor in a multi-core
system, or to always keep a certain region of memory cached for better performance
in specific parts of their design. Caching modes can also be adjusted to use “write
back” and “write through” schemes, providing users with finer grain control of when
external memory is updated by the cache controller. Sometimes it is also desirable
to disable caching completely for certain regions of memory. Beyond the features
directly attributable to caching, the MMU allows memory mapping features to be set,
resulting in the translation of one memory address to another. In addition, it is
possible to “flag” certain areas of memory to have specific behaviours such as
“sharable”, “read only”, or even to be protected against unintentional execution.
Examples of these latter behaviours can be attractive to programmers who have a
security focus and, for example, can be extremely powerful ways to deny hackers the
ability to execute rogue code from the stack which might have been placed there by
way of a maliciously crafted buffer overflow attack.

No matter what the desired usage model may be, all of these settings are controlled
by the various registers and configuration tables which are buried deep within the
processor core. Accessing these advanced features can be a complex task requiring
an intimate understanding of the underlying hardware architecture, and usually
requires manual decoding of some very unintuitive hexadecimal register values. For
this reason it is often desirable to write some function calls to automate the process.

SILICA | The Engineers of Distribution

i

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

The hard work can be done once by the user, and then forever more consigned to
the inner workings of a carefully written software function.

The Objective

It would be futile and foolish for any application note or technical guide to attempt to
discuss every possible combination of features available to the user. The number of
possible combinations are too vast to cover, and for those reasons this guide will
focus on one specific goal and explain how to achieve it. If users wish to access
other similar features, this guide can be used as a reference point allowing the
reader to modify the flow to achieve their goals. A common request from users is
the ability to enable or disable the processor caches for specific regions of memory
and, less frequently, to control the caching mode from a write-through / write-back
perspective. The objective of this guide will therefore be to create some custom
software functions which will allow the user to control these features quickly and
easily from a user application. To enable re-use and ease of use of the solution, this
guide will also discuss how to create a custom Xilinx SDK library which will enable the
new functionality to subsequently be added to any standalone board support
packages with just a few clicks of the mouse.

The Hard Theory

Before any code can be written we must first explore the technical documentation for
the processor cores within the Zynq 7000 series devices, and use it to clearly
understand how the cache controllers and MMUs operate. The first port of call is the
Xilinx Zynq Technical Reference Manual (UG585); Users would be forgiven for
assuming that caching modes would be discussed in the cache controller section of
the documentation, however this is not the case. An example of this can be seen in
chapter 3.4, which discusses the operation of the Level 2 cache and describes the
various write-back / write-allocate / write-through modes. Even though the L2 cache
controller supports all of the functionality that we wish to control, there is no
guidance on how these features are controlled from the cache controller. Further
investigation reveals that this is not an oversight but is correct behaviour because
the L2 cache controller simply accepts requests from the memory management unit,
and processes them according to the type of memory access that has been
requested. Although the L2 Cache controller can be configured to selectively lock the
cache arrays to a specific CPU core, the control of the caching modes (i.e. for
cacheable / non-cacheable / write-back / write-through) are determined by the
memory management unit. Our focus must therefore move to chapter 3.2.5 of the
Technical Reference Manual, which discusses the various features that are available
and explains that they are all controlled by configuration entries which are located in
“translation tables” in a known area of main memory. The term translation table
comes from the previously discussed capability for the MMU to map (translate)
virtual memory addresses to physical memory addresses. This functionality is often
seen when an operating system is used; each user application is compiled and linked
with the assumption that it is the only task running on the processor, whereas in
reality multiple software applications are running and are given access to the

SILICA | The Engineers of Distribution éégs,;!'cbﬂv

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

processor’s execution time by way of scheduler that is built into the OS kernel. A
critical point of understanding is that multiple software applications try to reference
memory at the same address locations because they are all compiled and linked in
the same way, and have no knowledge of each other. If no memory translation
were to take place in the processor, an application could potentially interfere with
another because they all reference the same addresses in memory. The MMU solves
this problem by fooling the applications into believing that they are accessing the
memory addresses that they request, but then translate the addresses in such a way
that each user application has its address space mapped to a different location in
physical memory. This explains the basic concepts of virtual memory (which is what
the user application sees), and physical memory (which is what the processor
hardware sees). In the example of an operating system, these mappings of memory
space from the virtual to physical addresses may need to constantly change as new
applications are loaded and closed, so the translation tables are held in a “soft”
format in main memory. This dedicated “soft” region of memory is known as the
translation table or page table, and is usually controlled by the operating system’s
kernel.

Now that the basic theory of address translation is understood, it is also important to
consider that not all user applications require the same amount of memory in order
to execute. The mapping of virtual to physical addresses must occur with enough
flexibility to cater for both small and large applications, but without wasting physical
memory in the embedded system. To achieve this, Memory Management Units
usually permit various different sizes of memory regions to be allocated for address
translation, and these regions are often known as “sections” or “pages”. To offer
maximum flexibility, the MMU in the Zyng 7000 series Cortex A9 processor allows
four different sizes of these regions to be controlled. These are discussed in the
Technical Reference Manual and are known as 4KB and 64 KB "“pages”, 1MB
“sections”, and 16MB “super-sections”. The translation table / page table is
therefore simply a list of the various memory regions, details of their virtual to
physical address mappings, and whether they have any special attributes or
behaviours such as “cacheable”, “non-cacheable”, “sharable”, “read-only”, or not
executable (known as “execute never”). There are trade-offs to be made here;
smaller pages give the user finer granularity of memory, and therefore need more
memory to be devoted to a larger page table, whereas larger sections or super-
sections offer coarse granularity of memory but the amount of memory required to
store the page tables is smaller. For very fine grain control of memory, a concept
exists whereby two different pages tables are used in unison; Level 1 and Level 2
page tables. Level 1 page tables (coarse grain) can point to either large sections of
memory, or optionally to entries in a Level 2 page table (fine grain). This latter
usage of Level 2 page tables allows very detailed and fine grain control of the
memory, but this is beyond the scope of this guide. It should be noted that even
this lengthy description is still a very simplistic view of the operation and capabilities
of the MMU, but it is adequate for the purposes of this guide.

For our purposes, we will be keeping things relatively simple by defining the
behaviour of memory which we shall divide into 1MB sections. A Level 1 page table
is sufficient to achieve this level of granularity, and therefore we shall be concerning
ourselves with a page table that has 4096 entries, which in turn gives control over

i

SILICA | The Engineers of Distribution ”-é?s,LAA,YCAV

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA 3

An Avnel Company

the entire 4GB address space (4096 * 1MB). The full details of the Level 1 page
tables can be found in Figure 3-5 of the Zynq Technical Reference Manual. Level 1
page tables can contain four different types of page table entries, each type being
denoted by the binary encodings in bits 1:0 of the table entry, but we are concerned
with the 1MB “section” entry which is highlighted below.

14 8
31| 23 1 7
19| 18| 17 | 16 [15 | 12 9 4| 3l2|1]0
o4 | 23 10 3]
12 5
F IGNORE oo
w
2
2
'; Page Table Basa Address, bits [31:10 (1] E |SBZ| NS |SBZ| O 1
8
[=4]
p—
=
o
2
5 =y |z =
S @O =lal| 2 T
| sZ |ws|o|ng|s|2|2 |02 lm|c|B|1]o0
L 54 < | [% 9
I | =3 a
22
wa
=]
=y
———
T |8 3
T | F =
g% r
S| 2 @
2|5 |8 - g
o |« | B [=
283N51nGSn_§E—_-D§}(NCB1{}
2|85 < | W3 P
o | 8 = @
@ c |m]
E-1 =
2 2
3|z 2
E = a
S| d o
w
E
g Raserved 1|1
x

WGSBS, c3_D6_120713

Figure 3-5: L1 Page Table Entry Format

The first key point of understanding to learn from this table is that the highlighted
area shows one of 4096 similar entries which are all described in the Level 1 page
table. The location of the entry in the page table denotes which area of physical
memory it controls. The first entry in the table therefore controls the behaviour of
the first 1MB section of memory at physical addresses 0x00000000 - 0x000FFFFF,
the second entry in the table controls the second 1MB section at physical addresses
0x00100000 > 0x001FFFFF, and so on until the last table entry (i.e. the 4096™)
which controls physical addresses OxFFFO0000 - OxFFFFFFFF. In the Zyng 7000
series devices we have a DDR memory controller which covers 1GB of memory space
and is located at addresses 0x00000000 - Ox3FFFFFFF (Note: The OCM can also
optionally be mapped to some of this memory region, but this is a topic beyond the
scope of this guide). Therefore the first 1024 entries in the Level 1 page table
control how the DDR behaves (1024 * 1MB).

Each entry in the Level 1 page table has a number of attributes which we must
understand in order to control the behaviour of the memory in that section. The
upper 12 bits of the entry (bits 31:20) control the base address of the 1MB virtual
address region that maps into the physical address space. We will keep things
simple by not introducing any address translation for the purposes of this guide (i.e.

SILICA | The Engineers of Distribution

¢
"
=
a
)

z

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA

=-SILICA

An Avnel Company

virtual addresses will be the same as physical addresses). Therefore the upper 12
bits of the table entry are always the same as the 12 bits of the offset of the page
table entry’s address (i.e. 0x000000 for the first entry, 0x100000 for the second,
0x200000 for the third, and so on). Bits 1:0 of each page table entry will always be
“10” because this is the coding which tells the MMU that the page table entry refers
to either a 1MB “section” or 16MB “super-section”. Bit 18 of the entry is always “0”
because that denotes that the table entry is for a 1MB “section” rather than a 16MB
“super-section” (super-sections would be denoted by a “1” in this bit). The
remaining bits control how the memory in that region behaves, and are explained in
the Technical Reference Manual in the sub-chapter entitled “Description of Page
Table Entry Fields”. This behaviour is summarised briefly below.

Bit Name Description
NS Always set to “0".
(Bit 19)
Non Global bit. Denotes that this entry in the page table only
applies to the associated “ASID” (Address Space IDentifier). This is
nG an advanced feature used by operating systems and allows the OS
(Bit 17) to create a page table entry that is only specific to one task that is
running under the OS. This topic is beyond the scope of this guide,
but we will leave the settings as “global”; thus nG=0.
Sharable bit. Denotes whether the memory can be shared by more
(Bitsl6) than one master (i.e. CPU). We will be allocating memory as
sharable, thus S=1.
Access Permission bits. Denotes whether the memory is Full
AP access, read only, privileged access, or completely inaccessible by
(Bit 15 and Bits | the CPU. See table 3-2 of the TRM. This topic is beyond the scope
11:10) of this guide, but we will be assigning “Full Access” permissions to
the DDR, thus AP[2:0] = “011".
These bits are used in combination with the C & B bits, and denote
(Bit.srfzrle) the behaviour of “ordered” memory, including the caching modes.
See Table 3-3 and 3-4 of the TRM, discussed below.
Controls to which of 16 possible domains the page table entry
belongs. Domains can be used to control the behaviour of a
Domain nun_1ber of page t:?\ble entries in a single group. _Permis_sions
(Bits 8:5) assigned to a domain then apply to all page table entries assigned
' within that domain. This topic is beyond the scope of this guide,
but we will be assigning all of the page table entries for the DDR to
the "1111" domain.
Execute Never bit. This denotes that the processor cannot execute
from the section of memory described by the page table entry. This
XN can be a useful feature when writing software with a security focus,
(Bit 4) for example to prevent execution from certain areas of memory
which could be targeted by hackers by way of a buffer overflow
attack. We will be permitting execution; thus XN=0.
These bits control the caching mode, and are used in combination
CandB | \ith the TEX bits. See Table 3-3 and 3-4 of the TRM, and also
(Bits 3:2) . . .
discussed in detail below.

SILICA | The Engineers of Distribution

SISILICA

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA 3

An Avnel Company

Our goal is to control the caching mode of the DDR memory in various 1MB regions
of the memory map. Using this analysis of the Level 1 page table entries, we can
see that our focus must be on the “TEX", “C”, and "B” bits. Table 3-3 and Table 3-4
from the TRM provide us with further guidance on the precise settings, and are
reproduced below for clarity.

Table 3-3: Memory Attributes Encodings

TEX [2:0] C B Description Memory Type
0 0 o Strongly-ordered Strongly ordered
0 0 1 shareable device Device
0 1 0 Quter and Inner write through, no allocate on write Mormal
s} 1 1 QOuter and Inner write back, no allocate on write MNormal
1 0 o Outer and Inner non-cacheable Normal
1 Reserved
10 1 o MNan-Shareable device Device
o - Reserved
11 - - Reserved

1XX ¥ ¥ Cached memary Normal
XX — Quter Policy
Y — Inner Palicy

Table 3-4: Memory Attributes Encodings

Encoding Bits
Cache Attribute
C B
0 0 MNon-cacheable
0 1 Write-back, write-allocate
1 0 Write-through, no write-allocate
1 1 Write-back, no write-allocate

The DDR memory is regarded as being “Normal” memory type, and we are trying to
control just the caching modes. We shall therefore be using the combination of bits
described on the last row of Table 3-3 where TEX(2) = 1, and TEX(1:0) are always
set to match the C & B bits described in Table 3-4. Note that although TEX(1:0) is
derived from the values of C & B, we must also set the values of C & B in their own
bit positions.

Our required encoding for the TEX, C, and B bits are therefore as follows:

Caching mode TEX[2] | TEX[1] | TEX[0] | C | B
Non-cacheable 1 0 0 0|0
Write-back, write-allocate 1 0 1 01
Write-through, no write-allocate 1 1 0 10
Write-back, no write-allocate 1 1 1 11

So by way of an example; let's imagine that we want to create a page entry which
controls the first 1MB of the DDR memory space (i.e. the first page table entry,
controlling physical addresses 0x00000000 - O0x000FFFFF).

SILICA | The Engineers of Distribution

¢
w
-~
a
=

>

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

For this example we will assume the following settings:
e Create a page table entry for a 1MB “Section”
Global scope (nG=0)
Sharable memory (S=1)
Full Access Permissions (AP[2:0] = "011")
Write-back / Write-allocate caching mode (C=0, B=1, TEX[2:0] ="101")
Domain ="1111"
Execution is permitted (XN=0)

31:24 | 23:20 | 19 | 18 | 17 | 16 15 14:12 11:10 9 8:5 4 312|110
Section Base
Address (PA) | NS | 0 |nG| S | AP[2] | TEX[2:0] | AP[1:0] | O | Domain [XN | C |B |1 |0

[31:20]
0x000000 0 0|0 |1 0 101 11 0|1111 |0 |O(1/1|0

So the value that we must write to the first entry in the page table is 0x15DES®6.

By now it is probably very clear why this is an undesirable process to perform
manually each time! Having a software function to automate these calculations
would be of huge benefit to software developers, will reduce the possibilities of
human error, and will save a lot of development time.

Let's Write Some Software

The starting point of almost all software design is to assess what has already been
written by somebody else. The world is arguably full of software code, and there is
seldom any point in “re-inventing the wheel” unless there’s an extremely good
reason to do so. In the case of our example we are writing some additional C code
to compliment the Standalone / Bare-metal Board Support Package (BSP) that is
supplied with the Xilinx SDK tools. A quick look at the Xilinx BSP reveals that there is
a supplied header file for MMU operations called “xil_mmu.h”. Looking inside that
header file we find a function which is designed to update the MMU page tables:

void Xil_SetTlbAttributes(u32 addr, u32 attrib);

The “TLB” part of the function name is an abbreviation for “Translation Look-Aside
Buffer”. We have already discussed the purpose of the page tables which list how
each region of memory behaves and also describes the mapping between the virtual
physical address space. One of the functions of the MMU hardware is to keep a local
copy of the most recent translation table look-up operations (and thus avoiding
additional external memory accesses), and so the purpose of the TLB is essentially a
cache of the page tables. When the required translation for a memory region is not
already present in the TLB, the MMU accesses the page tables which are stored in
memory to fetch the page table entry that is relevant to the memory region. This is
known as “page table walking”. Setting a TLB attribute using this function is
therefore a way of updating not just the page table, but also the cached TLB entry so
that it can be immediately used by the software. In actual fact, the function updates
the cached version of the page table in the TLB, and then flushes the caches to write
the new page table back to external DDR.

SILICA | The Engineers of Distribution

¢
A
:[=
A
>

3

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

We can see from the function prototype that two variables must be passed in to the
function; the address of the memory region, and the attributes that are to be
assigned. The “addr” field is easy, and simply represents the first address in the
1MB region of memory. The “attrib” field is the hexadecimal values that we
calculated in our previous example. So in summary, there is a supplied function to
update the MMU page tables / TLB, but not one which makes the process intuitive or
easy to use.

Our goal is therefore to write a function which makes life easier for the software
developer, by removing the need to manually calculate the hexadecimal value that
will be passed into the existing function. One way of doing this is to create a series
of enumerated #define values which represent each of the bit values in the page
table entry. For example, we saw previously that the “sharable” bit (Bit 16) can be
set when we want to enable that behaviour for a region of memory. The assertion
of just bit 16 in a 32 bit word has a hexadecimal equivalent value of 0x00010000.
We can therefore assign an intuitive enumerated name to this bit by creating a
macro in C using the #define syntax.

#define SHAREABLE ©x10000 // S = bl

Theoretically, we can now set the “sharable” bit for an MMU page table by passing
that macro into the supplied function from the BSP. So for the first 1MB region of
DDR memory in a Zyng-7000 device, we could use:

Xil_SetT1lbAttributes(0x00000000, SHARABLE);

Theory is fine, but this is clearly not going to work in practice because we have not
set the rest of the bits in the page table entry to valid values. In fact we have
cleared all of the other bits, and asserting just Bit 16 is not going to get us anywhere
on its own! So to make this work we need to assign macros to the remainder of the
bits in the page table entry. Some of them are easy (e.g. when the macro refers to
a single bit, as shown above) but some of them must be combinations of different
bits. For example, we previously saw that to enable Write-back / Write-allocate
caching mode, we should set the “C” bit to 0, set the “"B” bit to 1, and set the
TEX[1:0] field to “"01” (Note: TEX[2] = 1 for "Normal” memory types, so we needn’t
ever change it. We will therefore worry about controlling this bit later on). The
combination of these bits can be represented in the same way as we did before, and
a macro can be created:

31:24 |23:20 19 | 18 | 17 | 16 15 14:12 11:10 9 8:5 4 3(2[|1]0
Section Base
Address (PA) NS| O |nG| S | AP[2] | TEX[2:0] | AP[1:0] |O | Domain | XN|C |B|1]0
[31:20]
- -1 -1-1-1 - -01 B EE -l0j1]-]-

So the hexadecimal value which represents this caching mode is 0x1004.

#define WRITEBACK_WRITEALLOCATE ©0x1004 // TEX(1:0) = bel, C = bo, B = bl

SILICA | The Engineers of Distribution

¢
A
:[=
A
>

3

v

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA 3
An Avnel Company

Using an identical process, we can assign a complete set of macros for the rest of
the settings on the MMU. The following list also includes macros to represent some
of the MMU access permission bits, although we did not discuss these in detail.

#tdefine NON_CACHEABLE ©x00 // TEX(1:0) = bee, C = bo, B = be

#tdefine WRITEBACK_WRITEALLOCATE ©x1004 // TEX(1:0) = bol, C = bo, B = bl
#tdefine WRITETHROUGH_NO_ WRITEALLOCATE ©x2008 // TEX(1:0) = ble, C = bl, B = bo
#define WRITEBACK_NO_WRITEALLOCATE @x300C // TEX(1:0) = bll, C = bl, B = bl
#tdefine NON_GLOBAL ©x20000 // nG bl

#tdefine EXECUTE_NEVER ©x10 // XN bl

#define SHAREABLE 0x10000 // S = bl

#tdefine AP_PERMISSIONFAULT ©x00 // AP(2) = b@, AP(1:0) = boe

#tdefine AP_PRIVIEGED_ACCESS_ONLY ©0x400 // AP(2) = be, AP(1:0) = bol

#tdefine AP_NO_USERMODE_WRITE ©x800 // AP(2) = bo, AP(1:0) = blo

#define AP_FULL_ACCESS @xC0@ // AP(2) = bo, AP(1:0) = bill

#tdefine AP_PRIVILEGED_READ_ONLY ©x8800 // AP(2) = bl, AP(1:0) = bl@

These macros are usually added to a header file for easy re-use. In our case we will
create a header file called “mmu_control.h”, and add it to the source files in the
Xilinx SDK software application project.

The last part of the puzzle is to also calculate a hexadecimal value for the bits in the
page table entries which never change. We saw previously that the “NS” bit is
always 0, TEX[2] is always 1, Bit 18 and Bit 9 are fixed at 0, the “Domain” bits are
always set to “1111”, and Bits [1:0] representing the page table entry type are
always set to “10".

31:24 | 23:20 | 19 | 18 | 17 | 16 15 14:12 11:10 9 8:5 4 312|110
Section Base
Address (PA) NS| O |nG| S | AP[2] | TEX[2:0] | AP[1:0] | O | Domain | XN |C|B| 1|0
[31:20]

- 0/ 0| - |- - 1-- - o|1111 | - (-|-({1|0

So the hexadecimal value representing the fixed bits is 0x41E2.

Using this information we can now develop a software function that will calculate the
appropriate attributes to be passed into the supplied Xil_SetTIbAttributes() function
in the Xilinx BSP. An example of such a function is show below, which we will place
in @ new C source file called *“mmu_control.c”:

int adjust_mmu_mode(unsigned int start_of_1MB_address_region, unsigned int features)

{
unsigned int mmu_attributes = ©;
/* Declare the part of the page table value that gets written to the */
/* MMU Table, which is always fixed. */
/* NS = b@, Bit 18 = b@, TEX(2) = bl, Bit 9 = b, Domain = b1111l, */
/* Bits(1:0) = blo ... Equivalent hex value = 0x4le2 */
const unsigned int fixed_values = 0x4le2;
// Calculate the value that will be written to the MMU Page Table
mmu_attributes = fixed_values + features;
// Write the value to the TLB
Xil_SetTlbAttributes(start_of_1MB_address_region, mmu_attributes);
return (0);

}

SILICA | The Engineers of Distribution

Ll
a
{ -
H o)
B

F

3
g

2

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

Calling this function from a user’s software application is now an extremely simple
task, and does not require the software developer to remember any of the
complicated bit positions related to the MMU page table. For example, if the
developer wants to set the region of memory starting at address 0x20000000 to be
non-global, non-cacheable, and have access permissions in “privileged mode” only,
then they simple pass those macros into the function:

adjust_mmu_mode (0x20000000, NON_GLOBAL+NON_CACHEABLE+AP_PRIVIEGED ACCESS_ONLY);

The chances of making a human error with this approach is drastically reduced, and
the software developer wastes no time by performing the calculations manually. In
the event of a software update in later years, this code is also considerably easier to
read and understand.

A prototype for this function is created in a header file (mmu_control.h), and this will
be used later.

Packaging the Code Into a Library

From a software coding perspective, we now have a working solution which could be
manually added to future software projects. However, there are source files which
must be copied to the correct directories, and each project would need to be
manually updated if updates or bug-fixes were made. It would be a much nicer
solution if we could add our MMU control functionality to other projects in the form
of a library, allowing future users to access the software functions without copying
raw C code from project to project.

Fortunately the Xilinx SDK framework allows us to achieve this task quite simply. To
package code into a library requires that we create a known directory structure and
also a few control files. We will explore these requirements in detail.

The Directory Structure

The first requirement of a Xilinx software library

is to place the source files into a known and pre- 4 & MyProcessorlPLib

defined directory structure on the user’s i bsp
workstation. Readers with experience of L drivers
creating custom processor peripherals and drivers ~ L. peores
may already be familiar with the 4 || sw_services
“MyProcessorIPLib” folder containing “pcores” a || zyngl_mmu_control_v1_0
and “drivers” sub-directories. Custom libraries data
are placed in the same directory structure, but doc
under a sub-directory called “sw_services”.
. . . examples
Inside the sw_services directory we can create
. . . 4 SrC
any number of directories, each of which .
INCIUde

represent a unique software library. In the case
of the example shown, we have created a library
called “zynq7_mmu_control_v1_0"; note that we have optionally included a version
number using the “v1_0" notation. Beneath each library folder, two additional

SILICA | The Engineers of Distribution

¢
A
:[=
A
>

3

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

folders must be added; “data” which contains some important control files, and “src”
which contains the source files for the library. The “src” directory can optionally
contain sub-directories, and in our example we have placed our header file in the
“src/include” directory. Two further directories can optionally be created in each
library; the “doc” directory which can contain documentation for the library, and the

“example” directory which can contain example software applications demonstrating
use of the library.

The MLD file

The next requirement for a custom software library is a control file called the
Microprocessor Library Definition file (MLD). This definition file must be placed in the
“data” directory, and must have the suffix <library_name>.mld . In our example we
have created a file called “zynq7_mmu_control.mld".

OPTION psf version = 2.1;

BEGIN LIBRARY zyng/ mmu_ control

OPTION drc = zynqg/7 mmu control drc;

OPTION copyfiles = all;

OPTION REQUIRES OS = (standalone);

OPTION SUPPORTED PERIPHERALS = (cortexal);

OPTION APP LINKER FLAGS = "-Wl,--start-group,-lzyng7 mmu control, -
1xil,-1gcc,-1c, ——end-group";

OPTION desc = "Zyng 7 MMU Control";

OPTION VERSION = 1.0;

OPTION NAME = zyng7 mmu_ control;
END LIBRARY

The contents of the file are fairly simple, and start with a line that describes which
version of the file syntax is being used (known as the "“Platform Specification
Format”). At the time of writing, the latest version is 2.1 and this is denoted using
the syntax “"OPTION psf_version = 2.1”. The remainder of the text in the MLD is
enclosed within the “"BEGIN LIBRARY” and “END LIBRARY” lines, the first of which
also features the name of the library and matches the file name and directory name,
“zynq7_mmu_control”. The majority of the MLD file syntax rarely changes from the
default values, so the file contents shown above can be used as a starting point for
custom libraries. The syntax is simply a list of parameters which are prefixed by the
keyword “"OPTION”, and the various parameters are explained in the table below.

SILICA | The Engineers of Distribution

l
i

SISILICA

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

Option Description
DRC Design Rule Check. The name of a procedure in an associated TCL file
which performs DRC functionality. This is discussed later.
Tells the Xilinx SDK library generation tools which of the source files
COPYFILES should be copied into the source file tree of the board support package

(BSP). In most cases this parameter can be set to “all”, to copy all
source files into the BSP.

Tells the Xilinx tools that this library is dependent on another BSP. In
REQUIRES_OS our example, we are adding additional functionality to the “standalone”
BSP (also known as “bare metal” BSP).

Some libraries might only be applicable to a specific piece of hardware
in the embedded design. In our example we are writing functions which
can only work with the Cortex A9 processor, so the library will only be
compiled when that hardware is included in the design. If a MicroBlaze
SUPPORTED_PERIPHERALS | soft processor design were to be created, this library would not be
available for the user to select. Another example of dependencies
would be a library targeting Ethernet interfaces, and therefore should
not be compiled into the BSP unless an Ethernet MAC was present in the
design.

When software applications are compiled, the user is usually responsible
for adding the “-1” switch to the compiler command line. This switch
tells the compiler to include pre-compiled functions from a named
APP_LINKER_FLAGS library. This parameter allows the author of a library to have the -
switch added automatically to the compiler command line for any
software applications that are created. In the case of our example we
must add "-lzyng7_mmu_control”, the name of our library.

Library description. This is a free text field containing a string that will

DESC be displayed in the BSP Settings of the Xilinx SDK GUI.
The version number of the library. If multiple libraries exist in the
VERSION directory structure with the same name but different version numbers,
the Xilinx SDK GUI will present a way for the user to choose which
version of the library they wish to use in their BSP.
NAME The name of the library. This matches the name of the library directory

III

and the prefix of the MLD filename; “zyng7_mmu_contro

MLD files can also optionally contain user parameters which are denoted by the
keyword “"PARAM”. The library in our MMU control example contains no parameters,
but an example of the syntax is shown below for the purposes of completeness.

PARAM name = extra, desc = "Add extra functions?", type = bool, default = false ;

The purpose of a user parameter is to introduce flexibility into the library. In the
very simple example shown above, a Boolean switch is implemented in a user
parameter to allow the end user to control whether advanced functions should be
compiled into the library.

SILICA | The Engineers of Distribution

¢
]
{
)
>

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

From the end user’s perspective, parameters are displayed in the Xilinx SDK GUI
using additional menus which appear in the Board Support Package settings. User
parameters can be useful in situations where, for example, it might be desirable to
keep the compiled size of the library small unless the user required certain functions.
User parameters are analysed and acted upon by the associated TCL script which, in
the case of this example, could selectively decide which source files to compile into
the library. User parameters are not limited to Boolean true/false data types;
parameters could also capture other data types from the Xilinx SDK GUI such as
integer values, or drop down box choices.

The TCL file

At the heart of a custom software library is a TCL script which executes when the
library is included for compilation in the BSP settings. The TCL script allows
advanced functionality to be implemented as part of the build process, and is limited
only by the imagination of the library creator. Source files can be selectively copied,
moved, or even updated by the TCL script to include or remove functionality,
parameters can be adjusted in header files, and messages can be printed to the
console. If the author of the library has included user parameters as part of their
MLD file, these parameters can be used to make decisions within the TCL script.

proc zyng7 mmu control drc {libhandle} {
puts "Running DRC for Zyng7 MMU Control library... \n"
}

proc generate {libhandle} {

proc post generate {libhandle} {
xgen opts file $libhandle

proc execs generate {libhandle} {

proc xgen opts file {libhandle} {
Copy the include files to the include directory
set srcdir [file join src include]
set dstdir [file join include]

Create dstdir if it does not exist

if { ! [file exists $dstdir] } {
file mkdir $dstdir

}

Get list of files in the srcdir
set sources [glob -join $srcdir *.h]

Copy each of the files in the list to dstdir
foreach source $sources {
file copy -force S$source $dstdir

}

In this example we can see that the first procedure in the TCL file is a design rule
check (DRC) called “zyngq7_mmu_control_drc”. This procedure name matches the

SILICA | The Engineers of Distribution

<'SILICA

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

line in the associated MLD file, denoted by the “"DRC"” parameter. In this example
the procedure does nothing more than print a line of text to the console in the Xilinx
SDK, but the syntax of the procedure could implement any number of more
advanced features if required.

Other procedures in the TCL file have reserved names, and these procedures are
required by the Xilinx SDK tools. The “generate” procedure is called after library files
are copied from their source folder into the BSP, the “post_generate” procedure is
called after the “generate” has been called on all operating systems / drivers /
libraries in the design, and the “execs_generate” procedure is called after all of the
BSPs / libraries / drivers in the design have been generated. This system of pre-
defined procedures allows the authors of libraries to implement a wide range of
functionality at every stage of the software compilation process, even if the user
library depends upon sources created and built outside of the custom library. In the
case of this example, the only procedure to be populated with any code is the
“post_generate” procedure, which calls an additional user-written procedure called
“xgen_opts_file”.

To re-cap; our “src” directory contains a single C source file (mmu_control.c) which
contains the “adjust_mmu_mode” software function that we wrote earlier. We also
created the mmu_control.h header file which contains all of the macros (#define
statements) and the prototype for our custom function, and this was placed in the
“src/include” directory. The “xgen_opts_file” procedure checks for the existence of a
destination directory, creating it if necessary, and then copies each of the source files
into the correct destination directory within the BSP.

The Makefile

The last control file is the Makefile, which is located in the “src” directory. Makefiles
are common in software compilation flows, running the compiler tools to build output
files based on dependencies. It is beyond the scope of this document to fully
document the operation of a Makefile; extensive documentation is available at
https://www.gnu.org/software/make/manual/make.html but we shall discuss the
basics as an aid to understand the required changes to this file.

Makefiles operate on a principle of “rules”, and each rule has “targets” and
“dependencies”. Each rule has a header line which is formed of one or more
keywords separated by a colon “:” character. The Makefile syntax uses a target
before the “:” character, and a dependency after the “:”. Immediately following this
line is the “recipe” that creates the target. Another way to consider a “dependency”
is to consider it as a “prerequisite” that must already be in place before the rule can
execute.
target ... : dependency ...

recipe starts here
commands and operations

¢

SILICA | The Engineers of Distribution = s,;!gﬂv

https://www.gnu.org/software/make/manual/make.html

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA

SILICA | The Engineers of Distribution

=-SILICA

An Avnel Company

COMPILER=

ARCHIVER=

CP=cp

COMPILER FLAGS=

EXTRA COMPILER FLAGS=

RELEASEDIR=../../../1lib
INCLUDEDIR=../../../include
INCLUDES=-1${INCLUDEDIR}

ZYNQ7 MMU CONTROL DIR = .

LIB SRCS = $(ZYNQ7 MMU CONTROL DIR)/mmu_control.c
ZYNQ7 MMU CONTROL_SRCS = $(LIB_SRCS)

ZYNQ7 MMU CONTROL OBJS

$(ZYNQ7 MMU CONTROL SRCS:%.c=%.0)

EXPORT INCLUDE FILES = $(ZYNQ7 MMU CONTROL DIR)/include/mmu_ control.h

libs: libzyng7 mmu control.a
cp libzyng7 mmu control.a $(RELEASEDIR)
make clean

include:
@for i in $(EXPORT INCLUDE FILES); do \
echo ${CP} -r $$i S${INCLUDEDIR}; \
${CP} -r $%$i S${INCLUDEDIR}; \
done

clean:
rm -rf obj/*.o
rmdir obj
rm libzyng7 mmu control.a

libzyng7 mmu control.a: obj dir print msg isf base $(ZYNQ7 MMU CONTROL OBJS)
@echo "Creating archive $@"
$ (ARCHIVER) rc $@ obj/*.o

obj dir:
mkdir obj

print msg isf base:
@echo "Compiling Zyng7 MMU Control Library"

cC-0O8
$ (COMPILER) $(COMPILER FLAGS) $(EXTRA COMPILER FLAGS) $(INCLUDES) -c $< -o obj/$ (@F)

The contents of a Makefile can be executed from the command line simply by typing
“make”, and the tools will look for a default makefile called “makefile” (with no file
extension) in the current working directory. The first rule that is found in the file
(e.g. “libs”) is the first to be executed. Alternatively rules can be executed
individually from the command line using the command “make <target_name>".
Let’s begin by reviewing a simple rule.

libs: libzyng7 mmu control.a

cp libzyng7 mmu control.a $(RELEASEDIR)
make clean

Here we can see that we have a target called “libs”. The target doesn't output a
specific file per se, but the rule is dependent on the existence of a file called
“libzyng7_mmu_control.a”. The target is created / achieved by executing two lines
in the recipe; the first of which is a simple copy command (cp) which copies the

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA —

An Avnel Company

“libzynq7_mmu_control.a” file to a directory denoted by the variable "RELEASEDIR".
Variables can be referenced by the use of a dollar ($) character and then the name
of the variable in round brackets. The second line of the recipe executes another
Makefile rule called “clean”. The variable “"RELEASEDIR” was declared and assigned
further up in the Makefile.

A considerably more complex rule is shown at the bottom of the Makefile. This is a
more sophisticated rule and uses a variety of advanced syntax features.

o $ (COMPILER) $(COMPILER_FLAGS) $(EXTRA_COMPILER FLAGS) $(INCLUDES) -c $< -o obj/$ (QF)
The target name denotes a special case which is known as a “suffix rule”. In
essence, this type of rule creates wildcard targets of object files (.0) from C source
files (.c). So the target “example.o” would be created by the recipe using the source
file of the same prefix name “example.c” and, similarly, “my_code.0” would be
created from “my_code.c”. The recipe executes the command $(COMPILER) which
in our case would be the GCC compiler, using compiler flags listed in the variables
$(COMPILER_FLAGS) and $(EXTRA_COMPILER_FLAGS), specifying the include file
switch (-I) from the variable $(INCLUDES). The “-c” switch instructs the compiler to
compile the sources into object files but not link them into an executable, and the “-
0" switch tells the compiler to output the object file(s) into a directory called “obj”
and into filenames denoted by “$(@F)”. The “$/<” syntax denotes the name of the
first dependency, which in the case of our suffix rule example is the name of the .c
source file that is to be compiled. In the interests of completeness, “$(@F)” is
another special item of Makefile syntax which is called an “Automatic Variable”.
Specifically, the “"@F” denotes the name of the file in the target name, whereas "$@"
would be the name of the target itself. This Makefile is sadly even more confusing
because variables $(COMPILER), $(ARCHIVER), $(COMPILER_FLAGS and
$(EXTRA_COMPILER_FLAGS) are apparently all declared but have no values. This is
because their values get inherited from another Makefile that is built into the Xilinx
SDK tools, and which calls our user Makefile. This is done to make the compilation
of our library flexible enough to be compatible with different compilers (ARM Cortex
A9, PowerPC 405, Microblaze, etc).

In summary, the use of these Makefile features allows any number of C source files
to be added to the “src” directory, and they would all automatically be compiled into
object files (.0) using the correct compiler settings which are provided by the Xilinx
SDK. To edit this Makefile for our custom library, we simply had to update the
makefile in a few places:

e Edit the "LIB_SRCS” variable to list the source files in our library. Separated by
spaces, as hecessary.

e Update the filename of the archived Ilibrary, in our case
“libzynq7_mmu_control.a".

SILICA | The Engineers of Distribution éégs,;!'cbﬂv

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library == s ' L ' c A
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA 3

An Avnel Company

e Update some of the variable names to reflect the name of our custom library,
e.g. ZYNQ7_MMU_CONTROL_DIR, ZYNQ7_MMU_CONTROL_SRCS, and
ZYNQ7_MMU_CONTROL_OBJS.

e List the names of our custom header files in the EXPORT_INCLUDE_FILES
variable. (e.g. “mmu_control.h”)

e Change the string that is printed to the console during compilation (e.g.
“Compiling Zynq7_MMU_Control Library”).

Testing and Using the Custom Library

Before any custom library can be used in the Xilinx SDK, it is important to configure
the SDK so that it can locate custom libraries. Many readers of this guide will be
familiar with configuring the SDK to look for user repositories containing custom
drivers, and this is precisely the same flow.

In the SDK, open the

“PreferenceS" dlalogue by mi‘:j::n::t Add, remove or change the order of SDK's software repositories. ‘(,‘Zl 'EI vmv |

choosing “Window > el P e P —

Preferences” from the menu " |L|

bar. Select the “Xilinx SDK L

- Repositories” pane, as o —

shown in the screenshot. « KoK e e e -
B8 rctences Ccustor i iy [Nems |

Add a new repository to the Cdars oy on

list by clicking the “New...” Ej;:mpm'

button next to the right of prp— - -

the “Global Repositories” D A

list, and point to the folder By o

that you created for your |

custom library. The folder s

you must choose here i

should be the level of the s e sy

file system above the ‘ e | [Retorepetous] [orly]

“MyProcessorIPLib” folder. @ [ok J[comea |

The folder structure is

critical when defining the

location of a global repository, and the directory names “MyProcessorIPLib” and
“sw_services” are reserved and required. Click the “Rescan Repositories” button,
followed by “"OK”. This setting will provide visibility of your custom library to the SDK
tool, and will enable your library to be selected in the BSP settings. There is an
addition list shown on this screen called “Local Repositories”; this performs an
identical function to adding the library to the “Global Repositories” list, with the
exception that the library will only be visible to the current SDK workspace rather
than having global scope across all workspaces. The purpose of a custom library is

SILICA | The Engineers of Distribution

¢
w
-~
a
=

3

Controlling the Zyng MMU / Caches using a custom Xilinx SDK Library
Version 1.0, July 2014 -- Rich Griffin, Silica EMEA

<SILICA

An Avnel Company

to allow the same software functions to be used across many projects, so the use of
a global repository is more useful than a local one in most cases where custom

libraries are created.

The setup for the library is complete and we can now check to make sure that the

custom library appears in the GUI for the Standalone BSP Settings.

In the Xilinx

SDK, either create a new BSP or right-click an existing one and choose “Board
Support Package Settings”. In the “Overview” tab of the BSP settings you will now
be able to select your new library to include it in the BSP. Just tick the box.

Beoard Support Package Settings

Board Support Package Settings
Control various settings of your Board Support Package.

Overvi
< EEnew standalone_bsp_0
standalone
a4 drivers OS5 Type: standalone

7 _cortexad_0 o -
ps/_cortexas t 05 Version: 4.1 input and output, profiling, abort and exit.

Processor: ps/_cortexad_0

Standalone is a simple, low-level software layer. It provides access to basic processor features such as
caches, interrupts and exceptions as well as the basic features of a hested environment, such as standard

Check the box next to the libraries you want included in your Board Support Package.You can configure the library in the navigater on the left.

Mame Version Description

71 Twipido 21 {wIP TCP/IP Stack library: IwlP v1.4.0, Xilinx adapter v... |
xilffs 21 Generic Fat File System Library
xilflash 4.0 Kilinx Flash library for Intel/AMD CFI compliant paral...
xilisf 4.0 Kilinx In-system and Serial Flash Library
xilmfs 20 Kilinx Memory File System
xilrsa 11 Kilinx RSA Library

ke w
V| zyng?_mmu_control 1.0 Zyng 7 MMU Contrel

OK] | Cancel

The BSP will automatically re-compile and in the
“include” directory you will see that the custom
header file (mmu_control.h) has been added to the
list of other BSP header files.

That's it! The custom library can now be used in any
software application projects by “including” it, just like
any other header file from the BSP.

#include “mmu_control.h”

A set of resource files is provided with this document
as a reference, including the custom library created in
the example described.

SILICA | The Engineers of Distribution

4 @ standalone_bsp_0
.1 BSP Documentation
4 (= psT_cortexad 0
= code
4 = include
: _profile_timer_hw.h
s bspconfig.h
- [E rablazaat buoe
: rc_servo_control.h
3 sleep.h
: smc.h
3 vectors.h
: xadecps_hw.h
3 xadcps.h

; ubasic_types.h
. [xcpu_cortexad.h

¢
a
=
)
-

