Production Data - May 15, 2018

Features

- IC for standalone PMSM applications
- Internal power bridge up to 500mA(RMS)
- selectable PWM speed and error interface or analog speed interface
- SVM (Space Vector Modulation) realizes +14% output amplitude
- Tacho output
- Current controlled start up
- Integrated configurable error handling
- Blockage detection
- Automatic restart and rotor delocking
- Speed or current control
- Windmill functions
- Safety functions for overtemperature, over-/undervoltage, overcurrent and short circuit

Applications

- Small PMSM / BLDC FANs
- Small PMSM / BLDC pumps

Typical Operating Circuit

This IC integrates all components to control and drive a small BLDC fan or pump in a standalone application with minimum external component effort.

elm

E523.8

compliant

Ordering Information

Ordering-No.:	J _{Temp} Range	Package
E52381B62C	-40°C to +170°C	QFN20L5

Figure 1: Block diagram on L0

The device is designed for directly driving a motor on the same PCB. If longer wiring between IC and motor is applied, additional components for system level EMC & ESD compliance of the IC at pins M1..M3 may be required.

Production Data – May 15, 2018

Functional Diagram

Figure 1: Block diagram on L1 (IC, functional blocks)

Pin Configuration

Figure 1: Pin Configuration

Pin Description

No	Name	Туре	Description
1	GNDA	HV_S	ADC reference ground ground
2	VDDA	S	unconnected VDD supply output; connection of external capacitor
3	VDDD	S	internal VDD interface supply voltage
4	GND		ground
5	DBG	D_IO AD_IO	wave output; digital I/O pin special output for system configuration in the lab
6	TACH	D_IO	tachometer output digital I/O pin
7	TDA	D_IO	test interface; digital I/O pin JTAG bidirectional signal. shared signal for TMS, TDI and TDO
8	ТСК	D_IO D_I	test interface; digital I/O pin JTAG clock input
9	n.c.		unconnected
10	GNDBRIDGE[2]	S	bridge ground pin bridge ground
11	M[3]	HV_A_IO	motor pin motor
12	VBRIDGE[2]	HV_S	bridge supply pin bridge supply voltage
13	M[2]	HV_A_IO	motor pin motor
14	GNDBRIDGE[1]	S	bridge ground pin bridge ground
15	M[1]	HV_A_IO	motor pin motor
16	VBRIDGE[1]	HV_S	bridge supply pin bridge supply voltage
17	PWM	HV_D_I	PWM I/O goal speed input
18	VS	HV_S	supply supply input
19	Т	HV_D_I	test mode activation test activation input
20	VREF		ADC reference voltage
ΕP	EP		exposed die paddle, connect to GND

Note: A = Analog, D = Digital, S = Supply, I = Input, O = Output, B = Bidirectional, HV = High Voltage

Production Data – May 15, 2018

1 Absolute Maximum Ratings

Stresses beyond these absolute maximum ratings listed below may cause permanent damage to the device. These are stress ratings only; operation of the device at these or any other conditions beyond those listed in the operational sections of this document is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. All voltages referred to GND. Currents flowing into terminals are positive, those drawn out of a terminal are negative.

No.	Description	Condition	Symbol	Min	Max	Unit
1	170°C retention time		T _{QJ,170}		300	h
2	160°C retention time		T _{QJ,160}		1000	h
3	150°C retention time		T _{QJ,150}		2000	h
4	85°C retention time		T _{QJ,85}		8700	h
5	PWM input voltage range		V _{PWM}	-0.3	40	V
6	digital I/O pin voltage		V _{DP}	-0.3	3.6	V
7	digital supply voltage		V _{VDDD}	-0.3	3.6	V
8	digital I/O pin current		I _{DP}	-50	50	mA
9	T pin voltage		VT	-0.3	40	V
10	VS voltage		V _{VS}	-0.3	40	V
11	VDD pin forced voltage		V _{VDDA}	-0.3	3.6	V
12	VDD pin forced current		I _{VDDA}	-20	2	mA
13	VBRIDGE voltage			-0.3	40	V
14	ground bounce			-0.3	0.3	V
15	M current	TJ=35°C	I _M	-700	700	mA
16	M current		I _M	-500	500	mA

Table 1-1: AbsMaxRatingsTable

500 mA Sinusoidal BLDC Motor Controller Production Data – May 15, 2018

2 ESD

Table 2-1: ESD Protection

Description	Condition	Symbol	Min	Мах	Unit
ESD HBM protection at pin PWM	1)	V _{ESD(HBM),PWM}	-4	4	kV
ESD HBM protection at all other pins	1)	V _{ESD(HBM)}	-2	2	kV
ESD CDM protection at all pins	2)	V _{ESD(CDM)}	-500	500	V

¹⁾ According to AEC-Q100-002 (HBM) chip level test ²⁾ According to AEC-Q100-011 (CDM) chip level test

Production Data – May 15, 2018

3 Recommended Operating Conditions

Table 3-1: Recommended Operating Conditions

No.	Description	Condition	Symbol	Min	Тур	Мах	Unit
1	PWM input frequency range		f _{PWM}	100		2200	Hz
2	goal speed input low level		V _{L,PWM}	0		2.5	V
3	goal speed input high level		V _{H,PWM}	4V		V _{vs}	
4	goal speed input voltage range when using analog goal value instead of input PWM		V _{VM,PWM}	0		2.5	V
5	DP input high level		V _{IH,DP}	0.8			V _{VDDD}
6	DP input low level		V _{IL,DP}			0.2	V_{VDDD}
7	DP output load current, high state		I _{H,DP}	-2		2	mA
8	DP output load current, low state		I _{L,DP}	-2		2	mA
9	low input voltage		V _{L,T}	0		0.4	V
10	high level for customer configuration mode activation		V _{H,lab}	2.5		3.5	V
11	VS voltage		Vvs	5		29	V
12	VS storage capacitance		C _{VS}	10	47		uF
13	ceramic capacitance at VS		C _{cer,VS}	80	100		nF
14	external load current at pin VDD	IC in active mode	-I _{VDDA,ext}	0		5	mA
15	capacitance at pin VDD (ceramic capacitor)		C _{VDD}	1	4.7	10	μF
16	ESR of VDD capacitor		R _{ESR,C,VDDA}			0.5	Ohm
17	VBRIDGE voltage		V _{VBRIDGE}	6	13	29	V
18	M current		I _M	-500	-	500	mA
19	VREF capacitance		CVREF	8		12	nF

Production Data – May 15, 2018

4 Electrical Characteristics

(V_{VS} = 8V to 29V, T_{amb} =-40°C to + 150°C, unless otherwise noted. Typical values are at V_{VS} =13.5V and T_{amb} =+35°C. Positive currents flow into the device pins.)

4.1 Clock System

Table 4.1-1: Clock system electrical parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	clock frequency		f _{clk}		14.35		MHz

4.2 I/O Peripherals

4.2.1 PWM Speed Input

Table 4.2.1-1: PWM speed input electrical parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	goal speed input LH threshold		V _{LH,PWM}			4	V
2	goal speed input HL threshold		V _{HL,PWM}	2.5			V
3	pull up current		I _{pu,PWM}	3			mA
4	pull down current		I _{pd,PWM}	4.3			mA

4.2.2 Low Voltage Digital I/O Pins

Table 4.2.2-1: Low voltage digital I/O pins electrical parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	output high level	I _{DP} >-2mA.	V _{HO,DP}	0.8			V_{VDDD}
2	output low level	I _{DP} <2mA	V _{LO,DP}			0.2	V_{VDDD}

4.3 PMSM Motion Control Unit

4.3.1 Speed Control

Table 4.3.1-1: Speed controller parameters

Description	Condition	Symbol	Min	Тур	Max	Unit
speed controller update time ¹⁾		t _{c,speed}		10		ms
esolution of rpm setpoint*)		resolution			±0.4	%
hermal & lifetime drift of rpm setpoint*)		drift			±4.6	%
ŕ	peed controller update time ¹⁾ esolution of rpm setpoint ^{*)}	peed controller update time ¹⁾ esolution of rpm setpoint ^{*)} nermal & lifetime drift of rpm setpoint ^{*)}	peed controller update time ¹⁾ t _{c,speed} esolution of rpm setpoint ^{*)} resolution nermal & lifetime drift of rpm setpoint ^{*)} drift	peed controller update time ¹⁾ t _{c,speed} esolution of rpm setpoint ^{*)} resolution hermal & lifetime drift of rpm setpoint ^{*)} drift	peed controller update time ¹⁾ t _{c,speed} 10 esolution of rpm setpoint ^{*)} resolution nermal & lifetime drift of rpm setpoint ^{*)} drift	peed controller update time1t_c,speed10esolution of rpm setpoint*)resolution ± 0.4 hermal & lifetime drift of rpm setpoint*)drift ± 4.6

^{*)} Not tested in production

¹⁾ SCAN tested

Production Data - May 15, 2018

4.4 System Control

4.4.1 Error Detection and Behaviour

4.4.1.1 High Temperature Speed Reduction and Shut Down

Table 4.4.1.1-1: Temperature shut down values

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	1)		T _{off} -T _{normal}		30		K
2	1)		T _{off} -T _{reduce}		20		К
3	1)		T _{off} -T _{restart}		10		K
4	speed reduction delay ¹⁾		t _{reduce}		300		S

¹⁾ SCAN tested

4.4.1.2 Low Load Detection

Table 4.4.1.2-1: Low load detection parameters

No.	Description	Condition	Symbol	Min	Тур	Мах	Unit
1	low load detection delay time ¹⁾		t _{low_load}		3		S

¹⁾ SCAN tested

4.5 Power Supply

4.5.1 VDD Supply

Table 4.5.1-1: VDD supply electrical parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	VDDA output voltage	$0 > I_{VDDA,ext} > -15 \text{ mA}$	V _{VDDA}	3.15		3.45	V
2	output current limitation (short circuit)	V _{VDDA} =0V, V _{VS} =13.5V	-I _{lim,VDDA}			220	mA

4.6 Integrated Motor Bridge

4.6.1 "Small" Bridge Parametrical Description

Table 4.6.1-1: Electrical parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	on resistance to VBRIDGE ^{*)}	$V_{VS}, V_{VBRIDGE}$ =13.5V, T _J =35°C	r _{on,h,rt}		675	825	mΩ
2	on resistance to VBRIDGE*)	$V_{VS}, V_{VBRIDGE}$ =13.5V, T _J =150°C	r _{on,h,ht}		975	1125	mΩ
3	on resistance to VBRIDGE	$V_{VS}, V_{VBRIDGE}$ =6V, T _J =35°C	r _{on,h,rt,lv}		875	1050	mΩ
4	on resistance to VBRIDGE	V _{VS} ,V _{VBRIDGE} =6V, T _J =150°C	r _{on,h,ht,lv}		1200	1375	mΩ
5	on resistance to GNDBRIDGE*)	V _{VS} ,V _{VBRIDGE} =13.5V, T _J =35°C	r _{on,I,rt}		825	1100	mΩ
6	on resistance to GNDBRIDGE*)	$V_{VS}, V_{VBRIDGE}$ =13.5V, T _J =150°C	r _{on,l,ht}		1425	1575	mΩ
7	on resistance to GNDBRIDGE	$V_{VS}, V_{VBRIDGE}$ =6V, T _J =35°C	r _{on,I,rt,Iv}		1050	1225	mΩ
8	on resistance to GNDBRIDGE	V _{VS} ,V _{VBRIDGE} =6V, T _J =150°C	r _{on,I,ht,Iv}		1700	1875	mΩ
9	short circuit threshold		I _{th.SC}			4	А
10	short current detection time ¹⁾		t _{d,SC}		5		μs

*) Not tested in production

¹⁾ Scan tested

Production Data - May 15, 2018

4.7 Monitoring and Measurements

4.7.1 Temperature Monitoring

Table 4.7.1-1: Temperature monitoring parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	temperature measurement accuracy of the trimmed IC*)	T _J > 125°C	D _{T,IC}	-6		6	K
*) Not to	stad in production						

Not tested in production

4.7.2 VS Measurement

Table 4.7.2-1: VS measurement electrical parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	VS overvoltage high activation threshold ¹⁾		$V_{\text{LH,OV,HI,VS}}$			31	V
2	VS overvoltage low activation threshold ¹⁾		$V_{\text{LH,OV,LO,VS}}$			22	V
3	overvoltage and undervoltage reaction delay ²⁾		$t_{ m deb,VS_shut_down}$		100		μs

¹⁾ SCAN tested and tested by divider ratio

²⁾ SCAN tested

Production Data - May 15, 2018

5 Functional Description

5.1 Overview

This IC integrates all components to control and drive a small BLDC fan or pump in a standalone application with minimum external component effort.

5.2 Block Diagrams

Production Data – May 15, 2018

5.3 System Level Motor Interface and Error Interface

5.3.1 Motor Interface

5.3.1.1 Goal Speed Input

The goal speed can be controlled by the duty ratio of a rectangular input signal at the pin PWM.

5.3.1.1-1 shows the electrical field frequency and the resulting target speed versus input duty ratio. t_period,min, t_period,max and t_period,emergency can be set up with registers T_PERIOD_MIN_EXP, T_PERIOD_MAX_EXP and T_PERIOD_EMERGENCY_EXP.

Entering into the emergency mode is delayed by 4s. Entering from emergency mode into the normal mode is done as soon as the IC detects 4 subsequent valid PWM pulses with a duty ratio between 5% and 86%.

The control behaviour can also be set up to current control instead of speed control using register

T_PERIOD_MODE_CTRL. If the behaviour is set up to current control T_PERIOD_MIN_EXP,

T_PERIOD_MAX_EXP and T_PERIOD_EMERGENCY_EXP are used to set up the corresponding currents instead of the electrical field frequency.

The input behaviour can be set up to use an analog voltage instead of a duty ratio. The activation of this behaviour is done by register T_PERIOD_MODE_CTRL. When activated:

- the control behaviour changes to that of 5.3.1.1-2
- no emergency behaviour is available
- the pull up and pull down current sources at the PWM pin are switched off. In the analog mode the selection between current control and speed control is possible.

The electrical target field speed is

$$f_{period} = \frac{f_{clk}}{256 \cdot PLL _CNT_MAX \cdot 2^{PLL_PRESCALER}} ,$$

where f_{clk} is the system clock frequency. The adjusted field speeds are

$$f_{period, max} = \frac{f_{clk}}{256 \cdot T _PERIOD_MIN_MANT[7:0] \cdot 16 \cdot 2^{T_PERIOD_MIN_EXP}},$$

$$f_{period, min} = \frac{f_{clk}}{256 \cdot T _PERIOD_MAX_MANT[7:4] \cdot 256 \cdot 2^{T_PERIOD_MAX_EXP}} \text{ and }$$

$$f_{period, emergency} = \frac{f_{clk}}{256 \cdot T _PERIOD_EMERGENCY_MANT[7:4] \cdot 256 \cdot 2^{T_PERIOD_EMERGENCY_EXP}}$$

Note $T_PERIOD_xxx_EXP$ is written in 2th complement with $-7 \le T_PERIOD_xxx_EXP \le 7$.

The interface allows to limit the slope of the internal target value when transfering from one target speed to another. This feature can be used to smooth the transition behaviour of the interface. The slope limitation is configured by T_TARGET_PERIOD_CHANGE_LIMIT.

500 mA Sinusoidal BLDC Motor Controller Production Data – May 15, 2018

Figure 5.3.1.1-1: Goal speed vs. input duty ratio

Production Data – May 15, 2018

Figure 5.3.1.1-2: Goal speed vs. input voltage

Table 5.3.1.1-1: Goal spee	d setup registers
----------------------------	-------------------

Register Name	Address	Description
T_PERIOD_MIN_MANT	0xDE	min electrical field period mantissa
T_PERIOD_MIN_EXP	0xDF	minimum electrical field period exponent ¹⁾
T_PERIOD_MAX_MANT	0xE0	maximum electrical field period, normal run mantissa
T_PERIOD_MAX_EXP	0xE1	maximum electrical field period, normal run exponent ¹⁾
T_PERIOD_EMERGENCY_MANT	0xE2	emergency electrical field period mantissa
T_PERIOD_EMERGENCY_EXP	0xE3	emergency electrical field period exponent ¹⁾
T_PERIOD_MODE_CTRL	0xE4	set field frequency control or current control
T_TARGET_PERIOD_CHANGE_LIMIT	0xCC	target period change slope limitation
1) Oth complement report 0 7		

¹⁾ 2th complement, range -8...7

Table 5.3.1.1-2: Register T_PERIOD_MIN_MANT (0xDE) min electrical field period mantissa

	MSB				LSB
Content	MIN_MANT	[7:0]			
Reset value	0				
Access	R/W				
Bit Description					

	MSB		LSB
Content	MIN_EXP[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

¹⁾ 2th complement, range -8...7

Table 5.3.1.1-4: Register T_PERIOD_MAX_MANT (0xE0) maximum electrical field period, normal run mantissa

	MSB						LSB
Content	MAX_MAN	Γ[7:4]		-	-	-	-
Reset value	0			0	0	0	0
Access	R/W			R	R	R	R
Bit Description							

Table 5.3.1.1-5: Register T_PERIOD_MAX_EXP (0xE1) maximum electrical field period, normal run exponent¹⁾

	MSB			LSB		
Content	MAX_EXP[3:0]					
Reset value	0					
Access	R/W					
Bit Description						
¹⁾ 2th complement, range -87						

Table 5.3.1.1-6: Register T_PERIOD_EMERGENCY_MANT (0xE2) emergency electrical field period mantissa

	MSB							LSB
Content	EMERGEN	- ERGENCY_MANT[7:4]				-	-	-
Reset value	0					0	0	0
Access	R/W	W				R	R	R
Bit Description								

Table 5.3.1.1-7: Register T_PERIOD_EMERGENCY_EXP (0xE3) emergency electrical field period exponent¹⁾

	MSB		LSB
Content	EM_EXP[3:0]		
Reset value	0		
Access	R/W		
Bit Description			
1) 2th complement rar	ngo 8 7		

¹⁾ 2th complement, range -8...7

Table 5.3.1.1-8: Register T_PERIOD_MODE_CTRL (0xE4) set field frequency control or current control

	MSB							LSB
Content	-	-	-	-	-	-	VM	CTRL
Reset value	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R/W	R/W
Bit Description			voltage mode I, 1: current d					

Table 5.3.1.1-9: Register T_TARGET_PERIOD_CHANGE_LIMIT (0xCC) target period change slope limitation

	MSB				LSB	
Content	ACT	EXP[3:0]				
Reset value	0	0				
Access	R/W	R/W				
Bit Description	ACT : 0: off, 1: on EXP[3:0] : 2'complement exponent					

Table 5.3.1.1-10: Speed control registers

Register Name	Address	Description
FEATURE_CONTROL	0xD4	disable/enable speed-control features
DC_STATE_LAST		duty-cycle-state 5: DC_LOWER_EMERGENCY 4: DC_UPPER_EMERGENCY 3: DC_NOK_HIGH 2: DC_OK 1: DC_NOK_LOW 0: DC_OFF

Table 5.3.1.1-11: Register FEATURE_CONTROL (0xD4) disable/enable speed-control features

	MSB							LSB
Content	MIN_VOL	_T_SC/	ALER[2:0]		RESET_INT EGRATOR	TEMP_CUR _DIS	D_TERM_DIS	I_TERM_DIS
Reset value	0			0	0	0	0	0
Access	R/W			R/W		R/W	R/W	R/W
Bit Description	$\begin{array}{l} \textbf{MIN_VOLT_SCALER[2:0]: PID_VS_SCALED=0:} \\ \hat{\boldsymbol{\mathcal{V}}}_{M} = 0.54V \cdot MIN_VOLT_SCALER\\ PID_VS_SCALED=1:fsm_scaler_min=\{2'b00, MIN_VOLT_SCALER, 3'b000\}\\ \textbf{PID_VS_SCALED: 0: speed controller output is VS based\\ 1: speed controller output is fsm_voltage_scaler based\\ \textbf{RESET_INTEGRATOR: disable I reset if P limited}\\ \textbf{TEMP_CUR_DIS: disable high temperature current reduction}\\ \textbf{D_TERM_DIS: disable d-term of pid control}\\ \textbf{I_TERM_DIS: disable i-term of pid control} \end{array}$							

Table 5.3.1.1-12: Register **DC_STATE_LAST** (0xD5) duty-cycle-state5: DC_LOWER_EMERGENCY4: DC_UPPER_EMERGENCY3: DC_NOK_HIGH2: DC_OK1: DC_NOK_LOW0: DC_OFF

	MSB						SB
Content						DC_STATE[2:0]	
Reset value	0	0	0	0	0	0	
Access	R	R	R	R	R	R	
Bit Description							

The pwm input is measured by a hardware with an accuracy of

0.8 % at an input frequency of 80 Hz to 1000 Hz

2.0 % at an input frequency of 1000 Hz to 2500 Hz

Table 5.3.1.1-13: PWM_CTRL Register

Register Name	Address	Description
PWMCTRL	0x52	PWM control

Table 5.3.1.1-14: Register PWMCTRL (0x52) PWM control

	MSB							LSB
Content	-	-	-	-	-	PWM_PD	PWM_PU	PWM_EN
Reset value	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit Description	bit Description PWM_PD : enable PWM pull down source PWM_PU : enable PWM pull up source PWM_EN : enable PWM block							

5.3.2 Error Interface

The interface has an "ok" message when no error occurred, a "not ok" message when an internal error or overvoltage/undervoltage error occurs and 4 different error messages for motor and temperature errors. The messages are send by pulling down the PWM input for a certain time.

5.3.2-1 depicts an ok message. During the time t_2 the PWM pin is pulled down by the IC. For the rest of the time the PWM input is not pulled down and the IC observes the input PWM signal.

If an internal error occurs t₂=0 ("not ok" message).

5.3.2-2 depicts an error message. The 4 possible error messages are different in their times t_1 , t_2 and the number of repeats of each message.

5.3.2-1 summarizes the different timings.

If multiple errors occur only the one with the highest priority is sent. If an error occurs or ends during a message the message first is finished before the interface starts to transmit the new message.

Figure 5.3.2-1: Ok message

Figure 5.3.2-2: Error message

Production Data – May 15, 2018

message	errors	t₂/s	t₁/s	N	t ₃ /s	priority
not ok	V_{DS} desaturation, under voltage, over voltage	0	10	1	10	highest
1	low load	1	2	10	20	
2	rotor blocked	1.5	2.5	8	20	
3	over temperature	2	3	6	18	
4 ¹⁾	goal speed not achieved	2.5	3.5	5	17.5	
ok	no errors	0.5	10	1	10	lowest

Table 5.3.2-1: Message timing parameters

¹⁾ This error message is delayed by one more ok message to give the motor at least 10s time to achieve the goal speed.

5.3.3 TACHO Output

This function outputs a rectangular logic level signal. Its frequency equals the fundamental frequency of the electrical motor speed. 5.3.3-1 depicts the output signal in closed loop (angle controller is active). In this case the signal is generated by push-pull output of the pin.

The behaviour in open loop can be configured by register -. If set to 0 in open loop the output is driven to GND. If set to 1 in open loop the output also toggles like shown in 5.3.3-1.

If any error occurs (see section 5.3.2) the TACHO output is actively driven high.

If the T pin is pulled to V_{VDD} the tacho pin output changes to high level. For outputting different signals at TACHO the register TACH_CFG needs to be written to the corresponding value.

Figure 5.3.3-1: TACHO output signal

5.4 Clock System

The IC has an internal oscillator. It generates the base clock for all digital blocks. Depending on the mode of operation either all digital timing is generated from this frequency or this clock is used as base clock for synchronising to a PWM input frequency.

5.5 I/O Peripherals

5.5.1 PWM Speed Input

5.5.1-1 shows the pin structure. A comparator compares the input voltage with a threshold. The output of the comparator is connected to the pwm detection unit.

A pull up current source is connected to the supply. It pulls the pin voltage to V_{vs} when the wire breaks. This feature can also be used to detect a wire break by the ECU.

A switched pull down current source to GND is used to send an error message to the ECU.

Production Data – May 15, 2018

Figure 5.5.1-1: PWM speed input structure

5.5.2 Three Level Test Pin

The test pin is used to activate different lab and test modes. Apply the voltage VH,lab to activate the lab setup mode.

5.6 PMSM Motion Control Unit

5.6.1 PMSM Control Principle

The PMSM motion control unit autonomously controls the PMSM. It applies three sinusoidal voltages to the motor and controls the angle between current and voltage. The control principle in startup differs from the control in closed loop mode.

5.6.1.1 Startup

Figure 5.6.1.1-1: Start up current control

5.6.1.1-1 shows the startup current control. During the startup no angle control is active but a current control loop controls the motor current amplitude.

Production Data - May 15, 2018

5.6.1.2 Closed Loop Control

Figure 5.6.1.2-1: Closed loop control principle

The control principle is depicted in 5.6.1.2-1. The current is controlled to have a goal shift Φ_{goal} to the phase voltage. The goal of the closed loop control is explained on a single phase equivalent circuit of the motor and its averaged input voltage.

5.6.1.2-2 shows the equivalent circuit.

Figure 5.6.1.2-2: Single phase equivalent circuit

5.6.1.2-3 shows the corresponding voltage and current phasors in the goal state.

Figure 5.6.1.2-3: Phasor diagram of voltages and current of 5.6.1.2-2

Production Data - May 15, 2018

The goal is to bring the motor current in phase with the BEMF voltage. To achieve this the angle Φ_{goal} needs to be adjusted depending on motor current and speed.

5.6.2 State Machine

5.6.2-1 shows the state diagram including the corresponding state transfers. The state transition from OFF state, closed loop state and failure state is set outside this state machine. The behaviour in the states is explained in the following subsections.

Figure 5.6.2-1: State diagram, no initial position detection

Table 5.6.2-1: State machine registers

Register Name	Address	Description
FSM_STATE	0x92	PMSM state
DIRECTION	0x25	rotation direction
EN	0x90	enable the PMSM MCU

Table 5.6.2-2: Register FSM_STATE (0x92) PMSM state

	MSB		LSB
Content	state[3:0]		
Reset value	0		
Access	R/W		
Bit Description	state[3:0] : PMSM state		

Table 5.6.2-3: Register DIRECTION (0x25) rotation direction

	MSB
Content	DIR
Reset value	0
Access	R/W
Bit Description	DIR : select rotation direction

Table 5.6.2-4: Register EN (0x90) enable the PMSM MCU

	MSB
Content	EN
Reset value	0
Access	R/W
Bit Description	EN : enable the MCU

5.6.2.1 State Off

In this state:

- The power bridge is at high impedance.
- All motor position measurement functions are off.

There is no automatic state transfer from this state to any other state.

A state transfer can only be initialised by setting the fsm state from outside.

5.6.2.2 State Forward Synchronisation

In this state:

- The bridges are off.
- The motor synchronisation is activated. It measures the initial fundamental frequency and amplitude. Details and parameters of the detection are described in section 5.6.10.
- The fundamental frequency base generation, section 5.6.4.6, is activated to allow the fundamental frequency measurement.
- The BEMF measurement, section 5.6.5.2, is activated to allow the fundamental amplitude measurement.
- Speed control, stall detection, current control, current direction detection and angle controller are off.

When a valid fundamental frequency and amplitude is detected the phase voltage generation, section 5.6.4, is initialised to these values. The voltage angle is initialised to have a 10 degree enhance. A state transfer to state closed loop control, section 5.6.2.8, is initialised.

Production Data - May 15, 2018

When no valid fundamental frequency and/or amplitude is detected a state transfer to state current rampup is initialised.

5.6.2.3 State Current Rampup

In this state:

- The speed control is switched off.
- PWM generation, section 5.6.4.1 and averaged voltage generation, section 5.6.4.2, are on to allow a motor current to flow.
- Look up table address generation, section 5.6.4.3, is set up to a fixed value.
- Fundamental frequency base generation, section 5.6.4.6, is off to force a fixed phase voltage angle.
- Current control is on.
- CC_CURRENT_GOAL and CC_NUM_EVENTS_RUN are applied to the current control to force the start current.
- Stall detection, current direction detection, its reference, angle controller and motor synchronisation are off.
- The current ramps to its goal value CC_CURRENT_GOAL.

Details on the current control and how the inputs act on the goal current are described in section 5.6.6. When the current achieved its goal value the fsm transfers to state rotor settling, section 5.6.2.4.

Table 5.6.2.3-1: Start current control registers

Register Name	Address	Description
CC_CURRENT_GOAL	0x21	start current mantissa & exponent
CC_NUM_EVENTS_RUN	0x23	start current control speed

Table 5.6.2.3-2: Register CC_CURRENT_GOAL (0x21) start current mantissa & exponent

	MSB						LSB
Content	MANT[3:0]			EXP[3:0]			
Reset value	0		0				
Access	R/W			R/W			
Bit Description							

Table 5.6.2.3-3: Register CC_NUM_EVENTS_RUN (0x23) start current control speed

	MSB	LSB
Content	NUM[2:0]	
Reset value	0	
Access	R/W	
Bit Description		

5.6.2.4 Rotor Settling

In this state:

- The speed control is switched off.
- PWM generation, section 5.6.4.1 and averaged voltage generation, section 5.6.4.2, are on to allow a motor current to flow.
- Look up table address generation, section 5.6.4.3, is set to a fixed value.
- Fundamental frequency base generation, section 5.6.4.6, is off to force a fixed phase voltage angle.
- Current control is on.
- CC_CURRENT_GOAL and CC_NUM_EVENTS_RUN are applied to the current control to force the start current.
- Stall detection, current direction detection, its reference, angle controller and motor synchronisation are off.
- A counter is started to measure the time.

Production Data - May 15, 2018

When the time achieves the value $t_{settle} \cdot 10 \, ms$ where

 $t_{settle} = T_SETTLE_ROTOR_MANT \cdot 2^{T_SETTLE_ROTOR_EXP}$ can be set up with T_SETTLE_ROTOR, the state changes to start up RPM ramp, section 5.6.2.5.

Table 5.6.2.4-1: Rotor settling set up registers

Register Name	Address	Description
T_SETTLE_ROTOR	0x26	rotor settling time

Table 5.6.2.4-2: Register T_SETTLE_ROTOR (0x26) rotor settling time

	MSB		LSB		
Content	MANT[1:0]	EXP[2:0]			
Reset value	0	0			
Access	R/W	R/W	R/W		
Bit Description	MANT[1:0] : Mant EXP[2:0] : Exp				

5.6.2.5 State Startup RPM Ramp

In this state:

- The speed control is off.
- The phase voltage generation is on.
- The configuration data PLL PRESCALER SU and PLL INC SCAL MAX is input to the fundamental frequency base generation to set initial speed and speed ramp.
- · The current limitation is active.
- The configuration data CC CURRENT GOAL and CC NUM EVENTS RUN is input to the current limitation to set its value and speed.
- The stall detection is off.
- The current direction detection and its reference are on.
- The angle controller is off.
- The motor synchronisation is off.

A counter counts the number of electrical turns in start up. When its value equals start_up_turns the state changes to closed loop control.

The start up speed is:

$$f_{period, start} = \frac{1}{256.20}$$

where $-7 \leq PLL _ PRESCALER_SU \leq 7$.

 $256 \cdot 2048 \cdot 2^{\text{PLL}_\text{PRESCALER}_\text{SU}}$ Note the prescaler is adjusted using sign and absolute value notation.

t _{clk}

Please refer to section 5.6.4.4 for details on the speed ramp generation.

Table 5.6.2.5-1: Start up ra	amp configuration registers
------------------------------	-----------------------------

Register Name	Address	Description
PLL_PRESCALER_SU	0x27	start up prescaler
START_UP_TURNS	0x29	number of el. turns in the speed ramp state
PLL_INC_SCAL_MAX	0x28	speed ramp parameter

Production Data – May 15, 2018

Table 5.6.2.5-2: Register PLL_PRESCALER_SU (0x27) start up prescaler

	MSB				LSB
Content	sign	su[3:0]			
Reset value	0	0			
Access	R/W R/W				
Bit Description	sign : 0: positive, 1: negative				

Table 5.6.2.5-3: Register START_UP_TURNS (0x29) number of el. turns in the speed ramp state

	MSB				LSB
Content	TURNS[4:0]				
Reset value	0				
Access	R/W				
Bit Description	it Description TURNS[4:0] : number of speed ramp electrical turns				

Table 5.6.2.5-4: Register PLL_INC_SCAL_MAX (0x28) speed ramp parameter

	MSB		LSB
Content	SCAL[3:0]		
Reset value	0		
Access	R/W		
Bit Description	SCAL[3:0] : speed ram	o slope	

5.6.2.6 State Closed Loop Control 1

This state is an intermediate state before a re-synchronisation is initiated. The behaviour in this state is exactly the same as described in section 5.6.2.8.

For details on the re-synchronisation and parametrisation refer to sections 5.6.7.4 and 5.6.10.

5.6.2.7 State Forward Synchronisation

This state allows the detection of a rotor blockage after start up as described in section 5.6.7.4. The synchronisation behaviour is the same as described in sections 5.6.2.2 and 5.6.10.

When the re-synchronisation was successfully state closed loop control is activated. When not the fsm transfers to state off.

5.6.2.8 State Closed Loop Control

In this state:

- The speed control is on.
- The phase voltage generation is on completely.
- The current limitation is on.
- The configuration data CC_CURRENT_GOAL_CLOSED and CC_NUM_EVENTS_RUN_CLOSED is input to the current limitation.
- The stall detection is on.
- The current direction detection and its reference are on.
- The angle controller is on.
- The motor synchronisation is off.

If the stall detection detects a stall the state is changed to OFF.

Production Data – May 15, 2018

Table 5.6.2.8-1: Closed loop current control registers

Register Name	Address	Description
CC_CURRENT_GOAL_CLOSED	0x22	current limitation value
CC_NUM_EVENTS_RUN_CLOSED	0x24	current limitation speed
CC_CURRENT_GOAL_CLOSED_INITIAL	0xD9	current limitation value when the speed controller is activated

Table 5.6.2.8-2: Register CC_CURRENT_GOAL_CLOSED (0x22) current limitation value

	MSB					LSB
Content	MANT[3:0]		EXP[3:0]			
Reset value	0		0			
Access	R/W		R/W			
Bit Description	MANT[3:0] : mantissa EXP[3:0] : exponent					

Table 5.6.2.8-3: Register CC_NUM_EVENTS_RUN_CLOSED (0x24) current limitation speed

	MSB	LSB
Content	NUM[2:0]	
Reset value	0	
Access	R/W	
Bit Description		

Table 5.6.2.8-4: Register CC_CURRENT_GOAL_CLOSED_INITIAL (0xD9) current limitation value when the speed controller is activated

	MSB							LSB
Content	MANT[3:0]	MANT[3:0] EX		EXP[3:0]				
Reset value	0	0 0			0			
Access	R/W	R/W		R/W				
Bit Description								

5.6.3 Speed Control

The motor speed is controlled by a PID controller. 5.6.3-1 shows the topology. The controller measures the time difference t_{diff} between an electrical turn and an electrical turn at target speed. The measured difference

$$n_{diff} = t_{diff} f_{clk}$$
 is used to periodically calculate a new control value. The new control value is

 $ctrl_{new} = \operatorname{sum}_{n_{aff}} \cdot 2^{\text{T}_{\text{PERIOD}_{\text{CONTROL}_{\text{KI}_{\text{EXP}}}}} + n_{diff} \cdot 2^{\text{T}_{\text{PERIOD}_{\text{CONROL}_{\text{KP}_{\text{EXP}}}}} + (n_{diff} - n_{diff, last}) \cdot 2^{\text{T}_{\text{PERIOD}_{\text{CONTROL}_{\text{KD}_{\text{EXP}}}}}$

with $\sup_{n_{diff}} = \sup_{n_{diff}} + n_{diff}$ and $n_{diff, last} = n_{diff}$. The period for the calculation is tc.speed.

Note the control always refers to the electrical field period. If the motor has more than one pole pair the electrical target period setup should consider the number of pole pairs.

The control value can be set up to be either the voltage scaler FSM_VOLTAGE_SCALER or a voltage amplitude $V_{\scriptscriptstyle M}$.

We recommend to use the voltage amplitude V_M as then VS variations are cancelled out better. The control value is selected by FEATURE_CONTROL.

Production Data - May 15, 2018

When the voltage amplitude V_M is selected as control value the minimum control value can be selected by FEA-TURE_CONTROL and the maximum control value can be selected by MAX_VA_VOLTAGE.

When the voltage scaler FSM_VOLTAGE_SCALER is selected as control value only the minimum control value can be selected by FEATURE_CONTROL.

Figure 5.6.3-1: Speed controller topology

Table 5.6.3-1: Speed controller registers

Register Name	Address	Description
T_PERIOD_CONTROL_KP_EXP	0xE5	exponent of p term of the speed controller
T_PERIOD_CONTROL_KI_EXP	0xE6	exponent of i term of the speed controller
T_PERIOD_CONTROL_KD_EXP	0xE7	exponent of d term of the speed controller
MAX_VA_VOLTAGE	0xC8	upper voltage amplitude limitation of the speed controller

Table 5.6.3-2: Register T_PERIOD_CONTROL_KP_EXP (0xE5) exponent of p term of the speed controller

	MSB		LSB
Content	KP[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

Table 5.6.3-3: Register T_PERIOD_CONTROL_KI_EXP (0xE6) exponent of i term of the speed controller

	MSB		LSB
Content	KI[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

Table 5.6.3-4: Register T_PERIOD_CONTROL_KD_EXP (0xE7) exponent of d term of the speed controller

	MSB		LSB
Content	KD[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

Table 5.6.3-5: Register MAX_VA_VOLTAGE (0xC8) upper voltage amplitude limitation of the speed controller

	MSB							LSB
Content	MAX_VA[7:0]							
Reset value	0							
Access	R/W							
Bit Description								

5.6.4 Phase Voltage Generation

The phase voltage generation consists of the blocks PWM generation, averaged voltage generation, look up table address generation and fundamental frequency base generation. 5.6.4-1 shows the principle.

 The fundamental frequency base generation generates a scalable wide range time base for the fundamental output frequency

$$f_{fund,b} = \frac{f_{clk} \cdot pll_increment}{pll_cnt_max \cdot 2^{pll_prescaler-1}}$$

- The look up table address generation is triggered with the variable frequency and generates an address for the look up table
- The averaged voltage generation takes the address and generates the scaled averaged sine signals
- The PWM generation transforms the scaled averaged signals into PWM modulated output signals. The trigger signals for the current direction measurement and current measurement are generated in this block, too. The

fundamental frequency of the averaged motor voltage is $f_{fund} = \frac{f_{fund,b}}{tab_length}$, where tab_length is the address range of the lack up table. The following sections describe these four functions more in detail

address range of the look up table. The following sections describe these four functions more in detail.

Figure 5.6.4-1: Phase voltage generation principle

Table 5.6.4-1: Phase voltage generation registers

Register Name	Address	Description
FSM_VOLTAGE_SCALER	0x93	output voltage relative amplitude
PLL_PRESCALER	0x38	period exponent
PLL_CNT_MAX_H	0x39	period mantissa
PLL_CNT_MAX_L	0x3A	period mantissa

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Table 5.6.4-2: Register FSM_VOLTAGE_SCALER (0x93) output voltage relative amplitude

	MSB				LSB
Content	scaler[7:0]				
Reset value	0				
Access	R/W				
Bit Description					

Table 5.6.4-3: Register PLL_PRESCALER (0x38) period exponent

	MSB				LSB
Content	SIGN	EXP[3:0]			
Reset value	0	0			
Access	R/W	R/W			
Bit Description		SIGN : prescaler sign EXP[3:0] : exponent			

Table 5.6.4-4: Register PLL_CNT_MAX_H (0x39) period mantissa

	MSB						LSB
Content	CNT[14:8]						
Reset value	0)					
Access	R/W	R/W					
Bit Description	CNT[14:8] : fi	iltered period r	nantissa				

Table 5.6.4-5: Register PLL_CNT_MAX_L (0x3A) period mantissa

	MSB					LSB
Content	CNT[7:0]					
Reset value	0					
Access	R/W					
Bit Description	CNT[7:0] : f	iltered perio	d mantissa			

5.6.4.1 PWM Generation

Table 5.6.4.1-1: PWM generation parameters

parameter	value
pwm_max	358

5.6.4.1.1 Principle

5.6.4.1.1-1 shows the principle of the center aligned PWM generation.

An up/down counter counts up and down between a fixed value pwm_max and 0. Every time the counter reaches one of these two values it changes its direction.

The counter base frequency is the system clock frequency f_{clk} . The resulting PWM output frequency is

$$f_{PWM} = \frac{f_{clk}}{pwm \max + 1}$$

The three input signals pwm_th_1, pwm_th_2 and pwm_th3 are the scaled averaged signals from the averaged voltage generation. The high side bridge gate control signals are toggled when the counter achieves the corresponding threshold.

Production Data – May 15, 2018

The thresholds for the low side gate control signals are derived from pwm_th_1, pwm_th_2 and pwm_th3 by adding the value pwm_t_dead to them. It can be configured using register pwm_t_dead. When a low side gate threshold is equal to or larger than pwm_max the corresponding gate control signal will stay at low.

Figure 5.6.4.1.1-1: Center aligned PWM principle

5.6.4.1.2 Current Measurement Trigger Generation

During each PWM cycle three current measurement triggers are generated, 5.6.4.1.2-1. This section only describes the trigger generation. The current measurements and calculations are described more

in detail in section 5.6.6.

Production Data - May 15, 2018

Figure 5.6.4.1.2-1: Current measurement events

5.6.4.2 Averaged Voltage Generation

This block gets the input address_i from the look up table address generation, section 5.6.4.3. From the address three addresses with 120 degree phase shift are calculated.

The addresses are fed to a look up table, section 5.6.4.2.1. The three output signals of table are scaled using the voltage scaler input scaler i.

The scaled results are output to the PWM generation.

The thresholds are calculated by

$$val_x_0 = (tab_value-179) \cdot \frac{FSM_VOLTAGE_SCALER}{256} + 179$$

where *tab*_value is the value read from the look up table.

5.6.4.2.1 Look up Table

The loop up table has a length of 256 elements. It stores a sinusoidal signal with 9 bit resolution.

5.6.4.3 Look up Table Address Generation

The address generation is a counter. It is clocked with the overflow signal of the fundamental frequency base generation. The max. angle resolution of the system is 360°/256=1.4°.

5.6.4.4 Speed Ramp Generator

This block is used to generate the speed ramp during open loop operation. It operates as follows: at each timer tick (overflow) of the fundamental frequency base generation a counter is increased. When this counter reaches the value inc_ovf_num_i the value pll_cnt_max is re-calculated by

 $PLL _CNT_MAX (new) = PLL _CNT_MAX (old) \cdot (1-2^{INC_SCAL_MAX})$

5.6.4.5 PII Prescaler Adjust Unit

This block automatically adjusts the prescaler of the fundamental frequency base generation in a way that the MSB is always zero and MSB-1 is always one. This assures a maximum frequency resolution.

Production Data – May 15, 2018

5.6.4.6 Fundamental Frequency Base Generation

This block generates a widely variable output base frequency for the look up table. The output frequency is

 $f_{fund,b} = \frac{f_{clk}}{\text{PLL}_{CNT}_{MAX} \cdot 2^{\text{PLL}_{PRESCALER-1}}}$

The prescaler can be positive or negative.

5.6.5 ADC Calculations

This section describes the motor specific calculations that are made from the ADC results.

5.6.5.1 ADC Current Measurement

The IC measures the three phase currents.

5.6.5.1-1 shows the measurement sequence. During each PWM cycle for every phase a current measurement is done.

From the current measurements the motor current amplitude is calculated and stored in MOTOR_CURRENT_H:MOTOR_CURRENT_L.

Table 5.6.5.1-1: Current measurement registers

Register Name	Address	Description
MOTOR_CURRENT_H	0x3B	calculated motor current amplitude
MOTOR_CURRENT_L	0x3C	calculated motor current amplitude
CUR_MEAS_OFFSET_CTRL	0x58	

Table 5.6.5.1-2: Register MOTOR_CURRENT_H (0x3B) calculated motor current amplitude

	MSB		LSB
Content	CURRENT[11:8]		
Reset value	0		
Access	R		
Bit Description	CURRENT[11:8] : highe	r bits	

Table 5.6.5.1-3: Register MOTOR_CURRENT_L (0x3C) calculated motor current amplitude

	MSB						LSB
Content	CURRENT[7:0]					
Reset value	0)					
Access	R						
Bit Description	CURRENT[7:0] : lower	oits				

Table 5.6.5.1-4: Register CUR_MEAS_OFFSET_CTRL (0x58)

	MSB	LSB			
Content	INC_OFFS	EN_OFFS			
Reset value	0	1			
Access	R/W	R/W			
Bit Description	otion INC_OFFS : increase forced current measurement offset EN_OFFS : enable forced current measurement offset				

Production Data - May 15, 2018

Figure 5.6.5.1-1: Current measurement principle

5.6.5.1.1 Current Filter

The current amplitude is filtered with a IIR filter with the function

 $f_{filtered} = f_{filtered} - (I - I_{filtered}) \cdot 2^{-ADC_CURR_FILT_FACTOR}$

where $I_{filtered}$ is the filtered output current and I is the unfiltered input current.

The filter function is calculated each time the address of the look up table, section 5.6.4.3 changes. Hence the filter response is rotor frequency dependent and the "averaging" is done over a constant angle interval independent from the motor speed.

All current based functions (e.g. high speed stall detection, current control, angle control) use the filtered current $f_{filtered}$.

Table 5.6.5.1.1-1: Current filter registers

Register Name	Address	Description
ADC_CURR_FILT_FACTOR	0x20	current filter parameter

Table 5.6.5.1.1-2: Register ADC_CURR_FILT_FACTOR (0x20) current filter parameter

	MSB		LSB
Content	FACTOR[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

Production Data – May 15, 2018

5.6.5.2 BEMF Measurement and Calculation

5.6.5.2.1 Phase Voltage Measurement

The three phase voltages $V_{M[1]}$, $V_{M[2]}$ and $V_{M[3]}$ are measured only during motor synchronisation. They are used to calculate the three BEMF voltages during synchronisation. In this case the ADC periodically measures the three phase voltages without any additional synchronisation mechanism.

5.6.5.2.2 BEMF Calculation

The three BEMF voltages are calculated from the phase voltages by

$$bemf_1 = V_{M[1]} - \frac{V_{M[1]} + V_{M[2]} + V_{M[3]}}{3} .$$

$$bemf_2 = V_{M[2]} - \frac{V_{M[1]} + V_{M[2]} + V_{M[3]}}{3} .$$

$$bemf_3 = V_{M[3]} - \frac{V_{M[1]} + V_{M[2]} + V_{M[3]}}{3} .$$

They are used during synchronisation, section 5.6.10.

5.6.6 Current Control/Limitation

The current control/limitation is a ramp control. Its principle is shown in 5.6.6-1. Each time the control loop is executed the voltage scaler is increased or decreased by 1 depending on the current and the motor/generator mode.

The trigger of the control loop is as follows. An event with the motor speed dependent frequency $f_{fund, b}$, see section 5.6.4.6, triggers a counter. The counter counts from zero to $2^{CC_NUM_EVENTS_RUN}$. When the counter

achieves this value the counter is reset and the current control loop is executed one time. Hence for large values CC_NUM_EVENTS_RUN the current control loop is slowed down.

CC_NUM_EVENTS_RUN can be adjusted separately for motor start with register CC_NUM_EVENTS_RUN and for closed loop with register CC_NUM_EVENTS_RUN_CLOSED.

The value current_max is also adjusted separately with register CC_CURRENT_GOAL for motor start up and with CC_CURRENT_GOAL_CLOSED for closed loop control.

The value scaler comes from the speed control.

Typically the current control operates as a control during start up and as a limitation during closed loop operation.

Production Data – May 15, 2018

Figure 5.6.6-1: Current control principle

5.6.7 Stall Detection

Table 5.6.7-1: Stall detection registers

Register Name	Address	Description
STALL_DETECTION_CFG	0x36	enable/disable the different stall detection mechanisms
STALL_DET_STAT	0x3D	detected stalls

Table 5.6.7-2: Register STALL_DETECTION_CFG (0x36) enable/disable the different stall detection mechanisms

	MSB			LSB		
Content	stall_sync_en	stall_cm_en	stall_curr_en	stall_speed_en		
Reset value	0	0	0	0		
Access	R/W	R/W	R/W	R/W		
Bit Description	<pre>stall_sync_en : enable re-synchronisation after start up stall_cm_en : enable motor constant based stall detection stall_curr_en : enable current slope based stall detection stall_speed_en : enable field speed based stall detection</pre>					

Production Data – May 15, 2018

	MSB			LSB		
Content	stall_sync	stall_cm	stall_curr	stall_speed		
Reset value	0	0	0	0		
Access	R/W	R/W	R/W	R/W		
	<pre>stall_sync : re-synchronisation after start up failed stall_cm : motor constant based stall detection triggered stall_curr : current slope based stall detection triggered stall_speed : field speed based stall detection triggered</pre>					

Table 5.6.7-3: Register STALL_DET_STAT (0x3D) detected stalls

5.6.7.1 Current Slope Based Stall Detection

The high speed stall detection stores the measured current amplitudes in a ring buffer for one complete electrical turn. After the buffer is filled the detection unit continuously measures the actual current amplitude I_{ADC} , compares it with the corresponding value in the buffer $I_{ADC, last, turn}$ and updates the buffer. When $|I_{ADC} - I_{ADC, last, tur}| > I_{stall}$ a motor stall is detected. I_{stall} is adjusted with register stall_det_threshold. The high speed stall detection requires a minimum motor speed to be able to detect the current slope during one

Table 5.6.7.1-1: Current slope based stall detection registers

electrical turn. For low speed a different principle is used.

Register Name	Address	Description
STALL_DET_THRSHLD	0x32	Stall Detection Limit

Table 5.6.7.1-2: Register STALL_DET_THRSHLD (0x32) Stall Detection Limit

	MSB							LSB
Content	MANT[3:0] E			EXP[3:0]				
Reset value	0			0				
Access	R/W			R/W				
Bit Description								

5.6.7.2 Field Speed Based Stall Detection

When the rotor is blocked typically a too big angle between current and voltage is measured. As a result the angle controller will increase the field speed to the maximum possible value.

The stall detection uses this effect. When the speed exceeds a certain limit a stall is detected.

The max. speed is adjusted according to section 5.6.4.6.

The stall detection uses the min. prescaler of section 5.6.10 as max. speed configuration.

Additionally a stall is detected when the speed falls below a lower limit configured with PLL_PRESCAL_MAX_STALL.

The configuration of the lower limit is done equivalent to 5.3.1.1.

Table 5.6.7.2-1: Field speed based stall detection registers

Register Name	Address		Description
PLL_PRESCAL_MAX_STALL	0x37	prescaler stall detection	

Production Data - May 15, 2018

E523.81

Table 5.6.7.2-2: Register PLL_PRESCAL_MAX_STALL (0x37) prescaler stall detection

	MSB			LSB
Content	PRESCAL[3:0]			
Reset value	0			
Access	R/W			
Bit Description	PRESCAL[3:0] : prescaler in 2 complement			

5.6.7.3 Motor Constant Based Stall Detection

This block verifies the applied voltage amplitude with $c_m f_{el}$. If the difference between these two values exceeds a limit the applied voltage does not fit to the motor speed. This results in a detected stall. 5.6.7.3-1 shows the operation principle of this kind of stall detection

Figure 5.6.7.3-1: Motor constant based stall detection principle

The block is parametrised as follows:

$$c_m = \frac{c_m \cdot f_{clk} \cdot \sqrt{2}}{4 \cdot 1.14 \cdot \operatorname{div}_V \cdot V_{ref, ADC}}$$

where $c_m = \frac{V_{pp} \cdot T_{el}}{2 \cdot \sqrt{6}}$ is the field speed based motor constant, f_{clk} is the system clock, N_{ADC} is the ADC resolution,

div_v is the BEMF divider ratio and V_{ref,ADC} is the ADC reference voltage. CM is set up using fractional writing $c_m = CM_MANT \cdot 2^{CM_EXP}$.

The max. deviation from the from $c_m f_{el}$ is parametrised by

SVM_VOLTAGE_SCALER_OFFSET[7:0] = $\frac{\Delta V_{BEMF} \cdot 32 \cdot 2^{N_ADC}}{\operatorname{div}_V \cdot V_{ref,ADC}}$,

where $\Delta V_{\scriptscriptstyle BEMF}$ is the max. allowed deviation between the generated phase voltage amplitude and $c_{\scriptscriptstyle m} f_{\scriptscriptstyle el}$.

Table 5.6.7.3-1: Motor constant based stall detection registers

Register Name	Address	Description
СМ	0x33	Motor constant
SVM_VOLTAGE_SCALER_OFFSET	0x34	Voltage scaler offset

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.
Table 5.6.7.3-2: Register **CM** (0x33) Motor constant

	MSB							LSB	
Content	CM_MANT[CM_MANT[3:0] C			CM_EXP[3:0]				
Reset value	0			0					
Access	R/W			R/W					
Bit Description									

Table 5.6.7.3-3: Register SVM_VOLTAGE_SCALER_OFFSET (0x34) Voltage scaler offset

	MSB						LSB
Content	OFFSET[7:0	D]					
Reset value	0						
Access	R/W						
Bit Description	OFFSET[7:0] : SVM voltage scaler offset						

5.6.7.4 Synchronisation Based Stall Detection

This principle is used to detect a rotor blockage after start up. 5.6.7.4-1 depicts the principle.

After the forced speed ramp the closed loop state 1 is entered for an adjustable time. This state is introduced to allow further acceleration after the forced speed ramp. In closed loop state 1 the behaviour is exactly the same as in the closed loop control. After the adjustable time the motor phases are switched to high impedance and a synchronisation procedure according to section 5.6.10 is started. It uses the same parameters as described in section 5.6.10.

If the synchronisation procedure was successful the closed loop state is entered. If the procedure was not detected a rotor blockage is detected and the motor is stopped.

E523.81

500 mA Sinusoidal BLDC Motor Controller

Production Data – May 15, 2018

Figure 5.6.7.4-1: Synchronisation based stall detection principle

The duration of the closed loop state 1 is:

 $t_{\text{closed_loop_state_1}} = 2^{T_SYNC_CHECK} \cdot 80 \, ms$.

5.6.7.5 Current Zero Crossing Observation

This block counts the number of electrical turns in which no valid current zero crossing has been detected. At the beginning of each electrical turn a counter counts up by one. When a valid current zero crossing has been detected the counter is reset to zero.

When the counter value achieves a threshold NUM_{MAX} defined by $NUM_TURNS_ZERO_CURRENT$ the motor is stopped and fsm state is set to 0xf.

The threshold is calculated by $NUM_{MAX}=2^{NUM}_{TURNS}_{ZERO}_{CURRENT}$ with 1<= $NUM_{TURNS}_{ZERO}_{CURRENT}$ RENT<=6. The mechanism can be disabled by setting NUM_TURNS_ZERO_CURRENT to 7.

Production Data – May 15, 2018

Table 5.6.7.5-1: Current Zero Crossing Observation Registers

Register Name	Address	Description
NUM_TURNS_ZERO_CURRENT	0x9E	

Table 5.6.7.5-2: Register NUM_TURNS_ZERO_CURRENT (0x9E)

	MSB		LSB	
Content	NUM[2:0]			
Reset value	0			
Access	R/W			
Bit Description	NUM[2:0] : max. number of electrical turns without valid crossing detection			

5.6.8 Current Direction Detection

The current direction detection consists of an automatic window generation and a current direction sampling block. The current direction is measured at each motor phase.

The current direction at each phase is extracted from the phase current measurements at each output PWM cycle.

5.6.9 Angle Controller

5.6.9-1 shows the principle of the angle controller. The control loop is executed each time a measurement window is closed.

Figure 5.6.9-1: Angle controller principle

5.6.9.1 Goal Angle Calculation

Figure 5.6.9.1-1: Goal angle dependency

Production Data - May 15, 2018

5.6.9.1-1 repeats the control goal of the angle controller. The goal is to bring the current in phase with the BEMF. To achieve this a current and speed dependent angle Φ_{qoal} is calculated by

$$\Phi_{goal} = \arctan\left(\frac{\omega \cdot L \cdot I}{I \cdot R_L + \omega \cdot c_M}\right)$$

where ω is the electrical field frequency, L the motor inductance, R_L the motor resistance and C_M the motor BEMF constant normalised to the electrical field frequency ω .

The block calculates the angle Φ_{goal} using the formula

$$\Phi_{goal} = \arctan\left(\frac{\frac{1}{k_1 p l l_c cn t_m a x \cdot 2^{p l l_p rescal}} + \frac{k_j}{k_2 I_{ADC}}}\right),$$

where I_{ADC} is the ADC value of the current amplitude and k_i and k_j are fix constants.

 k_1 and k_2 can be adjusted and are stored using the fractional notation $k_1 = k_1 mant \cdot 2^{k_1 mant} \cdot 2^{k_1 mant}$ and $k_2 = k_2 mant \cdot 2^{k_2 mant} \cdot 2^{k_2 ma$

These constants are parametrised as follows:

$$k_1 = \frac{R \cdot 2^{31} \cdot 25}{L \cdot \pi \cdot f_{clk}} ,$$

$$k_2 = \frac{2^{23} \cdot L \cdot V_{ref, ADC}}{25 \cdot c_M \cdot 2^{10} \cdot R_i \cdot \sqrt{2}}$$

where

- R is the phase resistance,
- *L* is the phase inductance,
- $c_M = \frac{V_{BEMF}}{2 \cdot \pi \cdot f_{el}}$ is the field speed based motor constant,

• f_{clk} is the system clock,

- $V_{ref,ADC}$ is the ADC reference voltage,
- N_{ADC} is the ADC resolution in bits and
- R_i is the transconductance of the current measurement network.

Table 5.6.9.1-1: Goal angle configuration registers

Register Name	Address	Description
k1	0x2a	k1
k2	0x2b	k2

Table 5.6.9.1-2: Register k1 (0x2a) k1

	MSB							LSB
Content	MANT[2:0]			EXP[4:0]				
Reset value	0		0					
Access	R/W			R/W				
Bit Description								

Production Data - May 15, 2018

Table 5.6.9.1-3: Register k2 (0x2b) k2

	MSB							LSB
Content	MANT[3:0] E			EXP[3:0]				
Reset value	0			0				
Access	R/W			R/W				
Bit Description								

5.6.9.2 Angle Difference Calculation

This unit calculates the difference between the actual current angle and the current goal angle.

5.6.9.3 Generator Detection

The generator detector compares the angle difference with fixed limits. If the angle difference is within the interval [-90°,+90°] the motor mode is detected. Otherwise the generator mode is detected.

5.6.9.4 Frequency Correction

This control is triggered every time a current sign change is detected. 5.6.9.4-1 shows the signals that are calculated at each such trigger event. The controller structure is a PD controller with the angle difference as input and a frequency correction value as output.

angle_difference, current amplitude, pll_cnt_max and pll_prescaler are varying inputs.

p_part is a parameter for the P term of the frequency correction and can be adjusted with

GSCC_AMP_FACTOR[7:4]. d_part is a parameter for the D term of the frequency correction and can be adjusted with GSCC_AMP_FACTOR[3:0].

The multiplication of the angle difference with $2^{pll_prescaler}$ is used to compensate the motor speed dependent frequency of control loop activation.

A special feature is the current dependency of the controller. The internal correction value is amplified with a scaled value of the current amplitude. This increases the speed of load step responses while it damps the reactions for low motor load cases. The current scaling gscc_curr_amp can be set up with GSCC_MOT_CURR_MULT. The output value correction is limited.

Figure 5.6.9.4-1: Frequency correction calculation

Table 5.6.9.4-1: Frequency	correction registers
----------------------------	----------------------

Register Name	Address	Description
GSCC_AMP_FACTOR	0x2c	exponents of p and d parts of the angle controller
GSCC_MOT_CURR_MULT	0x2d	exponent of current dependency of the angle controller

Table 5.6.9.4-2: Register GSCC_AMP_FACTOR (0x2c) exponents of p and d parts of the angle controller

	MSB							LSB
Content	P[3:0] D			D[3:0]				
Reset value	0			0				
Access	R/W			R/W				
Bit Description								

Table 5.6.9.4-3: Register **GSCC_MOT_CURR_MULT** (0x2d) exponent of current dependency of the angle control-ler

	MSB		LSB
Content	MULT[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

5.6.10 Motor Synchronisation

5.6.10-1 shows the synchronisation sequence. First the duration and amplitude for a complete electrical turn is measured. Then a plausibility check is done on these values. If the check is passed the phase voltage generation is synchronised to the frequency and amplitude. The result of the plausibility check is considered at the sync_failed output.

The parameters pll_prescal_min, pll_cnt_min, pll_prescal_max and bemf_ampl_min of the plausability check can be adjusted by the registers PLL_PRESCAL_MIN, PLL_CNT_DEBOUNCE, PLL_PRESCAL_MAX and BEMF_AMPLITUDE_MIN correspondingly.

When the plausability check has been passed successfully the amplitude scaler is calculated by

scaler = $\frac{128 \cdot \text{BEMF}_ampl}{VSUP}$. measure one electrical turn duration plausability check T/2>pll_cnt_min*2^pll_prescal_min/f_clk T/2<pll_cnt_max*2^plT_prescal_max/f_clk BEMF_amp>bemf_ampl_min ok scaler calculation synchronise to field frequency forced start

Figure 5.6.10-1: Synchronisation sequence

The min. and max. allowed el. field frequency are defined by:

Production Data – May 15, 2018

$$\begin{split} f_{el,max} = & \frac{f_{clk}}{256 \cdot 256 \cdot 2 \cdot \text{PLL_CNT_DEBOUNCE} \cdot 2^{\text{PLL_PRESCAL_MIN}}} \quad \text{and} \\ f_{el,min} = & \frac{f_{clk}}{256 \cdot 2 \cdot 2048 \cdot 2^{\text{PLL_PRESCAL_MAX}}} & . \end{split}$$

The min. allowed BEMF amplitude is defined by:
$$V_{\text{BEMF,min}} = & \frac{\text{BEMF_AMPLITUDE_MIN} \cdot 64 \cdot V_{ref, ADC} \cdot \text{div}_V}{2048} \quad , \end{split}$$

where $V_{\rm ref,ADC}$ is the ADC reference voltage and ${
m div}_V$ is the BEMF voltage divider ratio.

Table 5.6.10-1: Motor synchronisation registers

Address	Description
0x2e	minimum BEMF amplitude allowed for synchronisation
0x31	max. allowed el. field frequency ¹⁾
0x30	max. allowed el. field frequency ¹⁾
0x2f	min. allowed el. field frequency ¹⁾
	0x2e 0x31 0x30

¹⁾ notation is sign and absolute value

Table 5.6.10-2: Register BEMF_AMPLITUDE_MIN (0x2e) minimum BEMF amplitude allowed for synchronisation

	MSB		LSB
Content	MIN[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

Table 5.6.10-3: Register PLL_CNT_DEBOUNCE (0x31) max. allowed el. field frequency¹⁾

	MSB		LSB
Content	DEB[3:0]		
Reset value	0		
Access	R/W		
Bit Description			
¹⁾ notation is sign and a	absolute value		

Table 5.6.10-4: Register PLL_PRESCAL_MIN (0x30) max. allowed el. field frequency¹⁾

	MSB			LSB
Content	SIGN	MIN[3:0]		
Reset value	0	0		
Access	R/W	R/W		
Bit Description				

¹⁾ notation is sign and absolute value

	MSB			LSB
Content	SIGN	MAX[3:0]		
Reset value	0	0		
Access	R/W	R/W		
Bit Description				

Table 5.6.10-5: Register PLL_PRESCAL_MAX (0x2f) min. allowed el. field frequency¹⁾

¹⁾ notation is sign and absolute value

5.7 System Control

5.7.1 Power up Behaviour

At power up the IC immediately goes into normal operation as soon as V_{VDD} is stable.

5.7.2 Error Detection and Behaviour

Table 5.7.2-1: Register Table

Register Name	Address	Description
BRIDGE_STAT	0x53	Bridge Status: set '1' by internal logic and reset by writing 0x00 to the register

Table 5.7.2-2: Register **BRIDGE_STAT** (0x53) Bridge Status: set '1' by internal logic and reset by writing 0x00 to the register

	MSB							LSB
Content	-	-	-	VS_UV	VS_OV	DS_DET_3	DS_DET_2	DS_DET_1
Reset value	0	0	0	0	0	0	0	0
Access	R	R	R	R/W	R/W	R/W	R/W	R/W
	VS_UV : VS VS_OV : VS DS_DET_3 DS_DET_2 DS_DET_1	: Drain sour : Drain sour	e ce desaturat ce desaturat	ion phase 2				

5.7.2.1 High Temperature Speed Reduction and Shut Down

The IC has a speed reduction and temperature shut down function. 5.7.2.1-1 shows the behaviour. If the temperature is in its normal range the output speed is between the min. and max. value. If the temperature exceeds T_{reduce} after t_{reduce} the speed is limited to 50% of the max. value. Also the emergency speed is limited to this value. When the temperature falls below T_{normal} immediately the speed range is increased up to the max. value again. When the temperature exceeds T_{off} the IC shuts down immediately. Then no message is sent anymore. The IC restarts when the temperature falls below $T_{restart}$.

A high temperature indication is output at the error interface as soon as the IC temperature exceeds T_{normal} . T_{off} can be configured using register T_OT_CFG. 5.7.2.1-3 shows the possible configurations. All other temperatures depend on this value, see 4.4.1.1-1.

Elmos Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Production Data – May 15, 2018

Table 5.7.2.1-1: Temperature behaviour configuration registers

Register Name	Address	Description
T_OT_CFG	0xE8	

Table 5.7.2.1-2: Register T_OT_CFG (0xE8)

	MSB	LSB
Content	OT_CFG[2:0]	
Reset value	0	
Access	R/W	
Bit Description		

Table 5.7.2.1-3: Temperature shut down configurations

T_OT_CFG[2:0]	T _{OFF} /°C
0	120
1	130
2	140
3	150
4	160
5	170
6	no OT behaviour
7	no OT behaviour

5.7.2.2 High Temperature Current Reduction

Figure 5.7.2.2-1: High temperature current reduction

Production Data - May 15, 2018

The IC has a high temperature current reduction function. It reduces the current limitation when the junction temperature exceeds 150°C. The transfer function is shown in 5.7.2.2-1.

5.7.2.3 Low Load Detection

The IC has a low load detection. It operates when the goal speed or current is above 80% of its maximum value. The detection principle is different for speed control and current control.

Speed Control

When this mode is active LOW_LOAD_TH acts as a current threshold: When the speed is above 80% of its max. value and the motor current amplitude is smaller than LOW_LOAD_TH a low load condition is detected after t_low_load.

Current Control

When this mode is active LOW_LOAD_TH acts as a speed threshold: when the speed achieves LOW_LOAD_TH a low load condition is detected after t_low_load.

Behaviour

When a low load condition is detected depending on the control mode either the speed (speed control) or the control current (current control) is limited to LOW_LOAD_CTRL. When the low load condition vanishes the limitation is removed.

Table 5.7.2.3-1: Low load detection registers

Register Name	Address	Description
LOW_LOAD_TH_MANT	0xE9	threshold to detect low load condition mantissa
LOW_LOAD_TH_EXP	0xEA	threshold to detect low load condition exponent
LOW_LOAD_CTRL_MANT	0xEB	control value in case of low load, mantissa
LOW_LOAD_CTRL_EXP	0xEC	control value in case of low load, exponent

Table 5.7.2.3-2: Register LOW_LOAD_TH_MANT (0xE9) threshold to detect low load condition mantissa

	MSB		LSB
Content	MANT[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

Table 5.7.2.3-3: Register LOW_LOAD_TH_EXP (0xEA) threshold to detect low load condition exponent

	MSB		LSB
Content	EXP[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

Table 5.7.2.3-4: Register LOW_LOAD_CTRL_MANT (0xEB) control value in case of low load, mantissa

	MSB		LSB
Content	MANT[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

Table 5.7.2.3-5: Register LOW_LOAD_CTRL_EXP (0xEC) control value in case of low load, exponent

	MSB		LSB
Content	EXP[3:0]		
Reset value	0		
Access	R/W		
Bit Description			

5.7.2.4 Rotor Blockage Detection and Reaction

Table 5.7.2.4-1: Rotor blockage registers

Register Name	Address	Description
STALL_STAT	0xD8	stall status bits

Table 5.7.2.4-2: Register STALL_STAT (0xD8) stall status bits

	MSB							LSB
Content	MOTOR_STARTED	STALL_STA	ATE[6:4]		RESTART_COUNT[3:0]			:0]
Reset value	0	0			0			
Access	R	R			R			
	MOTOR_STARTED : this flag indicates running motor (motor FSM passed state SPEED_RAMP) STALL_STATE[6:4] : current blockage reaction FSM state RESTART_COUNT[3:0] : current motor restart count (how often the motor was restarted before unblock sequence)							

5.7.2.4.1 Detection

The rotor blockage detection uses the stall detection methods to detect if the motor is running or not. The stall detection methods are described in section 5.6.7.

5.7.2.4.2 Reaction

If a blockage is detected the IC stops the motor immediately and tries to restart after configurable delay. This is repeated 4 times. If all 4 starts fail the IC starts an unblock procedure. During the unblock procedure the IC does 8 alternating start ups backwards and forwards at a 50% increased current amplitude. Then the IC again starts a normal start up procedure and repeats this loop indefinitely. The restart delay is configured by register T RESTART BLOCK.

A blockage message is started when the unblock procedure starts. This message ends 5s after a motor start was successfully.

Table 5.7.2.4.2-1: Blockage reaction control

Register Name	Address	Description
T_RESTART_BLOCK	0xED	

Table 5.7.2.4.2-2: Register T_RESTART_BLOCK (0xED)

	MSB
Content	T_BLK
Reset value	0
Access	R/W
Bit Description	T_BLK : 0: T _{RESTART} =1s, 1: T _{RESTART} =10s

5.7.2.5 Short Circuit Reaction

If a short circuit or overcurrent is detected the motor is switched off immediately. After 10s the IC tries to restart the motor until the next error occurs. This sequence is repeated indefinite times.

5.8 System Configuration

5.8.1 Debugging and Configuration Interface

The IC has special functions that help to set up configuration data in the lab. These functions consist of

- · disabling some functions to improve the observability of special configurations
- configuring the I/O interface to observe special internal signals at the interface

The following sections describe these functions.

5.8.1.1 Control and State Machine Disabling Functions

These functions are configured in FSM_DEBUG[3:0].

dis_fsm_transfers allows to disable all fsm transfers. It can be used for example to adjust the start up motor current without doing a motor start.

dis_speed_ramp disables the start up speed ramp. It can be used to set up the initial motor speed and observing the behaviour.

dis_cc disables the current control loop/limitation. It can be used to adjust different parameters, e.g. angle or speed controller parameters when the current limitation prevents clean observation of these control loops.

dis_angle_c allows to disable the angle controller. When observing some effects and being unsure about the reason this configuration may help to indicate some sources of trouble.

5.8.1.2 Observing Special Internal Signals

view_1 allows to output IC internal signals. By setting it to different values,

- trigger events of current direction detection
- ADC current measurement and zero current trigger events
- measured current direction
- sync signals to synchronise to the beginning of the electrical turn
- · information about the calculated goal angle
- averaged phase output voltage
- calculated current amplitude

can be observed on the TACHO and DBG output pins. Below tables show the possible observation configurations.

Table 5.8.1.2-1: Observation registers

Register Name	Address	Description
TACH_CFG	0x81	select which signal is output at the TACHO output. Can only be set and activated in customer test mode.
DBG_CFG	0x83	select which signal is output at the DBG output. Can only be set and activated in customer test mode.
DBG_CTRL	0x82	configure the DGB output behaviour

Table 5.8.1.2-2: Register **TACH_CFG** (0x81) select which signal is output at the TACHO output.Can only be set and activated in customer test mode.

	MSB			LSB
Content	TACH_CFG[3:0]			
Reset value	0			
Access	R/W			
Bit Description	TACH_CFG[3:0] : Tach	o configuration in custom	ner test mode	

Table 5.8.1.2-3: Register **DBG_CFG** (0x83) select which signal is output at the DBG output.Can only be set and activated in customer test mode.

	MSB							LSB
Content	DBG_CFG[7:0]							
Reset value	0	0						
Access	R/W	R/W						
Bit Description	DBG_CFG[7:0] : DBG configuration in customer test mode							

E523.81

500 mA Sinusoidal BLDC Motor Controller

Production Data – May 15, 2018

	MSB							LSB
Content	MPX[3:0]				MPX_BYP ASS	DAC_OE	DOUT	OE
Reset value	0)			0	0	0	0
Access	R/W				R/W	R/W	R/W	R/W
Bit Description	1: digital MF DAC_OE : (1: select in (DOUT : 0: c 1: driver ena	8 t_n t_hs[0] t_hs[1] t_hs[2] t_ls[0] t_ls[1] t_ls[2] on[0] on[1] on[2] on[2] ASS : 0: app PX to output 0: DAC disal customer tm driver disable tal output dis	, can only se bled -> ATB analog src e	et in elmos te from DBG_C				

Table 5.8.1.2-4: Register DBG_CTRL (0x82) configure the DGB output behaviour

Table 5.8.1.2-5: Tacho output configurations

TACHO_CFG	tacho output signal	description
0	tacho	as described in section 5.3.3
1	trig_turn	trigger at phase 1 voltage zero crossing
2	trig_target_crossing	trigger at target phase 1 current zero crossing event
3	frw	phase 1 current direction
4	gscc_window	window within which the current direction is filtered
5	bemf_1_sign	detected phase 1 BEMF sign, can be used to observe the synchronisation behaviour
6	bemf_2_sign	detected phase 2 BEMF sign, can be used to observe the synchronisation behaviour
7	bemf_3_sign	detected phase 3 BEMF sign, can be used to observe the synchronisation behaviour
8	stall_det_mot_const_based	motor constant based stall detection signal
9	stall_det_current_slope	current slope based stall detection signal
10	stall_det_speed_based	speed based stall detection signal
11	sync_failed	use to configure motor re-synchronisation
15	generator_mode	motor is generating energy

Table 5.8.1.2-6: DBG output configurations

DBG_CFG	DBG output	description
0	-	
1	pwm_th1	analog averaged phase 1 output voltage
2	pwm_th2-pwm_th1	
3	current_amplitude	calculated motor current amplitude
4	motor_amp	output voltage amplitude
5	output_voltage_angle	
129	trig_turn	trigger at phase 1 voltage zero crossing
130	trig_target_crossing	trigger at target phase 1 current zero crossing event
131	frw	phase 1 current direction
132	gscc_window	window within which the current direction is filtered
133	bemf_1_sign	detected phase 1 BEMF sign, can be used to observe the synchronisation behaviour
134	bemf_2_sign	detected phase 2 BEMF sign, can be used to observe the synchronisation behaviour
135	bemf_3_sign	detected phase 3 BEMF sign, can be used to observe the synchronisation behaviour
136	stall_det_mot_const_based	motor constant based stall detection signal
137	stall_det_speed_based	speed based stall detection signal
138	stall_det_current_slope	current slope based stall detection signal
139	sync_failed	use to configure motor re-synchronisation
143	generator_mode	motor is generating energy

5.9 Power Supply

5.9.1 Supply Overview IC Supply Only

Figure 5.9.1-1: Power supply principle

Production Data – May 15, 2018

5.9.2 VDD Supply

The VDDA supply contains the following components:

- The linear voltage regulator VREG delivers 3.3 V nominal supply voltage to the external storage capacitor at pin VDDA. The maximum recommended external load current at the VDDA pin is -IVDDA,ext.
- The power on reset block (POR) starts and resets the power supply control.
- The VDDA-Monitor resets the digital control unit.

5.9.3 References

5.10 Integrated Motor Bridge

The motor bridge contains three independent half bridges with over current and short circuit detection.

Attention:

As the supply monitoring only observes the chip supply pin, the bridge supply pins and the chip supply pin must always be connected to the same rail. Otherwise the undervoltage shut down of the bridge does not operate correctly which may lead to erroneous behaviour and bridge destruction in the undervoltage case.

Any supply state where the bridge is supplied and the chip supply pin is not supplied is strongly forbidden.

Figure 5.10-1: Half bridge block diagram

The motor phase currents are monitored by the IC. A short circuit causes immediate shut down of the bridge. The system reaction is equal to a blockage reaction.

5.11 Monitoring and Measurements

5.11.1 Monitoring Principle

Figure 5.11.1-1: Analog Monitoring Principle (Internal Bridge)

5.11.2 Temperature Monitoring

The IC has an internal temperature monitoring. It measures the junction temperature. The system reaction at high temperatures is described in section 5.7.2.1.

5.11.3 VS Measurement

The supply voltage is continuously measured by the IC. The measured supply voltage is used

- to generate over voltage and under voltage signals
- for synchronisation to a turning motor.

The IC has a selectable over voltage shut down. The selection is done by register CONF_VS_OV_UV. With this register the threshold can be chosen between VS_OV_HI and VS_OV_LO.

Production Data - May 15, 2018

If V_{VS} exceeds VS_OV the IC is shut down. The IC restarts when V_{VS} becomes lower than the reactivation threshold.

If V_{VS} becomes lower than $V_{\text{LH,SD,BRIDGE,VS}}$ the internal bridge and the IC are shut down. It restarts when V_{VS} exceeds $V_{\text{HL,SD,BRIDGE,VS}}$.

5.11.4 BEMF Measurement

The phase voltage is measured to synchronise to a turning motor. It is measured only during the synchronisation process.

5.11.5 ADC Reference

The voltage reference at pin VREF is used for A-to-D conversion. The nominal voltage is 2.5 V.

5.12 OTP

Table 5.12-1: Fuses Customer

Register Name	Address	Description
FUSE_REG_CUS[7:0]	0xA0	
FUSE_REG_CUS[15:8]	0xA1	
FUSE_REG_CUS[23:16]	0xA2	
FUSE_REG_CUS[31:24]	0xA3	
FUSE_REG_CUS[39:32]	0xA4	
FUSE_REG_CUS[47:40]	0xA5	
FUSE_REG_CUS[55:48]	0xA6	
FUSE_REG_CUS[63:56]	0xA7	
FUSE_REG_CUS[71:64]	0xA8	
FUSE_REG_CUS[79:72]	0xA9	
FUSE_REG_CUS[87:80]	0xAA	
FUSE_REG_CUS[95:88]	0xAB	
FUSE_REG_CUS[103:96]	0xAC	
FUSE_REG_CUS[111:104]	0xAD	
FUSE_REG_CUS[119:112]	0xAE	
FUSE_REG_CUS[127:120]	0xAF	
FUSE_REG_CUS[135:128]	0xB0	
FUSE_REG_CUS[143:136]	0xB1	
FUSE_REG_CUS[151:144]	0xB2	
FUSE_REG_CUS[159:152]	0xB3	
FUSE_REG_CUS[167:160]	0xB4	
FUSE_REG_CUS[175:168]	0xB5	
FUSE_REG_CUS[183:176]	0xB6	
FUSE_REG_CUS[191:184]	0xB7	
FUSE_REG_CUS[199:192]	0xB8	
FUSE_REG_CUS[207:200]	0xB9	
FUSE_REG_CUS[215:208]	0xBA	
FUSE_REG_CUS[223:216]	0xBB	
FUSE_REG_CUS[231:224]	0xBC	
FUSE_REG_CUS[239:232]	0xBD	

Table 5.12-2: Register FUSE_REG_CUS[7:0] (0xA0)

	MSB						LSB
Content	-	-	-	TSC_LIMI T_MANT	TSC_LIMIT	_EXP[3:0]	
Delivery state	0	0	0	0	0		
Access	R	R	R	R	R		
Bit Description		_MANT : tar _EXP[3:0] :	• •	•			

Table 5.12-3: Register FUSE_REG_CUS[15:8] (0xA1)

	MSB					LSB
Content	FEATURE_	DIS[7:0]				
Delivery state	0					
Access	R					
Bit Description	FEATURE_	DIS[7:0] : fe	ature disable	е		

Table 5.12-4: Register FUSE_REG_CUS[23:16] (0xA2)

	MSB							LSB
Content		TACH_CO NF	-	-	NUM_TZC[3:0]		
Delivery state	0	0	0	0	0			
Access	R	R	R	R	R			
Bit Description	CONF_VS_OV_UV : vs over voltage thershold TACH_CONF : set Tacho to low in FSM mode 4 and 5 NUM_TZC[3:0] : number of turns with zero current							

Table 5.12-5: Register FUSE_REG_CUS[31:24] (0xA3)

	MSB							LSB
Content	LOW_LOAD	D_C_MANT[3:0]		LOW_LOAD	D_C_EXP[3:	:0]	
Delivery state	0				0			
Access	R				R			
Bit Description	LOW_LOA	D_C_MANT	[3:0] : Low I	oad ctrl mant	t			
	LOW_LOA	D_C_EXP[3	:0] : Low loa	d ctrl exp				

Table 5.12-6: Register FUSE_REG_CUS[39:32] (0xA4)

	MSB							LSB
Content	LOW_LOAD	D_TH_MAN[3:0]		LOW_LOAD	D_TH_EXP[3:0]	
Delivery state	0				0			
Access	R				R			
Bit Description		OW_LOAD_TH_MAN[3:0] : Low load thresho						
	LOW_LOAI	D_TH_EXP[3:0] : Low lo	ad threshold	l exp			

Table 5.12-7: Register FUSE_REG_CUS[47:40] (0xA5)

	MSB							LSB
Content	T_EL_KD_	EXP[3:0]			T_RESTA RT_BLK	T_OT_CFG	6[2:0]	
Delivery state	0				0	0		
Access	R				R	R		
Bit Description	T_RESTAR	T_BLK : Re	start Block	ed control ex				

Table 5.12-8: Register FUSE_REG_CUS[55:48] (0xA6)

	MSB							LSB	
Content	T_EL_KP_I	EXP[3:0]			T_EL_KI_E	XP[3:0]			
Delivery state	0				0				
Access	R				R				
Bit Description			part of spee		p				
	T_EL_KI_E	: XP[3:0] : I p	art of speed	control exp					

Table 5.12-9: Register FUSE_REG_CUS[63:56] (0xA7)

	MSB							LSB
Content	T_EL_EMG	Y_EXP[3:0]			SPEED_CT	RL[1:0]	CUR_MEAS	
Delivery state	0				0		0	
Access	R	R			R		R	
Bit Description	T_EL_EMG SPEED_CT			iod of emerg	gency mode	ехр		

Table 5.12-10: Register FUSE_REG_CUS[71:64] (0xA8)

	MSB						LSB
Content	T_EL_MIN_	EXP[3:0]		T_EL_EMG	Y_MANT[3:	0]	
Delivery state	0			0			
Access	R			R			
Bit Description		EXP[3:0] : N Y_MANT[3:		ergency mod	e mant		

Table 5.12-11: Register FUSE_REG_CUS[79:72] (0xA9)

	MSB					LSB
Content	T_EL_MIN_	MANT[7:0]				
Delivery state	0					
Access	R					
Bit Description	T_EL_MIN_	MANT[7:0]	Min target	period mant		

Table 5.12-12: Register FUSE_REG_CUS[87:80] (0xAA)

	MSB					LSB
Content	T_EL_MAX	_MANT[3:0]		T_EL_MAX	_EXP[3:0]	
Delivery state	0			0		
Access	R			R		
Bit Description	T_EL_MAX T_EL_MAX		et period mar period exp	nt		

Table 5.12-13: Register FUSE_REG_CUS[95:88] (0xAB)

	MSB						LSB
Content	T_SETTLE_	ROTOR[4:0)]		T_SYNC_C	HK[2:0]	
Delivery state	0				0		
Access	R				R		
Bit Description	T_SETTLE T_SYNC_C			tor			

Table 5.12-14: Register FUSE_REG_CUS[103:96] (0xAC)

	MSB						LSB
Content	VOLT_SCA	L_OFFS[7:0]					
Delivery state	0						
Access	R						
Bit Description	VOLT_SCA	L_OFFS[7:0] : Svm volt	age scaler o	ffset		

Table 5.12-15: Register FUSE_REG_CUS[111:104] (0xAD)

	MSB							LSB
Content	STALL_SYNC _EN	STALL_DET _BEMF	STALL_DET_ HIGH_SPEED	STALL_SPEED_LIMIT	PRE	S_N	IAX_S	TALL[3:0]
Delivery state	0	0	0	0	0			
Access	R	R	R	R	R			
	STALL_DET_H STALL_SPEEI	BEMF : Stall d HGH_SPEED D_LIMIT : Stal	nc enable etection BEMF t : Stall detection I detection spee Il prescal max s	high speed d limit				

Table 5.12-16: Register FUSE_REG_CUS[119:112] (0xAE)

	MSB						LSB
Content	STALL_DE	T_THRSH[7:	0]				
Delivery state	0						
Access	R						
Bit Description	STALL_DE	T_THRSH[7	:0] : Stall de	tection thres	hold		

Production Data – May 15, 2018

Table 5.12-17: Register FUSE_REG_CUS[127:120] (0xAF)

	MSB						LSB
Content	-	-	-	PLL_PRESCAL_SU_SIGN	PLL_PRES	CAL_S	U[3:0]
Delivery state	0	0	0	0	0		
Access	R	R	R	R	R		
Bit Description PLL_PRESCAL_SU_SIGN : PLL prescaler su sign PLL_PRESCAL_SU[3:0] : PLL prescaler su							

Table 5.12-18: Register FUSE_REG_CUS[135:128] (0xB0)

	MSB							LSB
Content	-	-	-	PLL_PRESCAL_MIN_SIGN	PLL_	PRES	CAL_N	1IN[3:0]
Delivery state	0	0	0	0	0			
Access	R	R	R	R	R			
Bit Description PLL_PRESCAL_MIN_SIGN : PLL prescaler min sign PLL_PRESCAL_MIN[3:0] : PLL prescaler min								
	PLL_PRESCAL_MIN[5.0] . PLL prescaler min							

Table 5.12-19: Register FUSE_REG_CUS[143:136] (0xB1)

	MSB						LSB
Content	-	-	-	PLL_PRESCAL_MAX_SIGN	PLL_PRI	ESCAL_N	MAX[3:0]
Delivery state	0	0	0	0	0		
Access	R	R	R	R	R		
Bit Description PLL_PRESCAL_MAX_SIGN : PLL prescaler max sign PLL_PRESCAL_MAX[3:0] : PLL prescaler max							

Table 5.12-20: Register FUSE_REG_CUS[151:144] (0xB2)

	MSB						LSB
Content	PLL_CNT_I	DEB[3:0]		PLL_IN_SC	AL_MAX[3:0	D]	
Delivery state	0			0			
Access	R			R			
Bit Description	PLL_CNT_ PLL_IN_SC						

Table 5.12-21: Register FUSE_REG_CUS[159:152] (0xB3)

	MSB				LSB
Content	K2[7:0]				
Delivery state	0				
Access	R				
Bit Description	K2[7:0] : K2	2			

Production Data – May 15, 2018

Table 5.12-22: Register FUSE_REG_CUS[167:160] (0xB4)

	MSB				LSB
Content	K1[7:0]				
Delivery state	0				
Access	R				
Bit Description	K1[7:0] : K [*]	1			

Table 5.12-23: Register FUSE_REG_CUS[175:168] (0xB5)

	MSB					LSB
Content	GSCC_AMF	P_FAC[7:0]				
Delivery state	0					
Access	R					
Bit Description	GSCC_AM	P_FAC[7:0]	gscc amp f	factor		

Table 5.12-24: Register FUSE_REG_CUS[183:176] (0xB6)

	MSB							LSB		
Content	GSCC_M_0	CUR_MULT[3:0]		MAX_VA_V	OLTAGE[3:	0]			
Delivery state	0				0					
Access	R	λ				R				
Bit Description			[3:0] : GSCC 0] : upper lin							

Table 5.12-25: Register FUSE_REG_CUS[191:184] (0xB7)

	MSB							LSB	
Content	CM_MANT[3:0]				CM_EXP[3:0]				
Delivery state	0				0				
Access	R				R				
Bit Description	CM_MANT								

Table 5.12-26: Register FUSE_REG_CUS[199:192] (0xB8)

	MSB						LSB	
Content	-	CC_NM_EV_RUN[2:0]	-	CC_NM_EV_RUN_CL[2:0]				
Delivery state	0	0	0	0				
Access	R	R		R	R			
	CC_NM_EV_RUN[2:0] : CC number events run CC_NM_EV_RUN_CL[2:0] : CC number events run closed							

Table 5.12-27: Register FUSE_REG_CUS[207:200] (0xB9)

	MSB							LSB	
Content	CC_CUR_GOAL_CLO[7:0]								
Delivery state	0								
Access	R								
Bit Description	CC_CUR_GOAL_CLO[7:0] : CC current goal closed								

Table 5.12-28: Register FUSE_REG_CUS[215:208] (0xBA)

	MSB							LSB		
Content	CC_CUR_C	CC_CUR_GOAL[7:0]								
Delivery state	0	0								
Access	R									
Bit Description	CC_CUR_G	GOAL[7:0] : (Current goal	l						

Table 5.12-29: Register FUSE_REG_CUS[223:216] (0xBB)

	MSB							LSB		
Content	CURR_FILT_FAC[3:0] B			BEMF_AMP_MIN[3:0]						
Delivery state	0 0				0					
Access	R	R				R				
Bit Description	CURR_FILT BEMF_AMF									

Table 5.12-30: Register FUSE_REG_CUS[231:224] (0xBC)

	MSB							LSB	
Content	ECC	-	DIRECTION	START_U	P_TURNS	6[4:0]			
Delivery state	0	0	0	0					
Access	R	R	R	R					
Bit Description	ECC : ECC[0] DIRECTION : Motor direction START_UP_TURNS[4:0] : Start up turns								

Table 5.12-31: Register FUSE_REG_CUS[239:232] (0xBD)

	MSB				LSB
Content	ECC[8:1]				
Delivery state	0				
Access	R				
Bit Description	ECC[8:1] : E	ECC[8:1]			

Production Data - May 15, 2018

6 Package Reference

The E523.81 is available in a Pb free, RoHs compliant QFN20L5 plastic package according to JEDEC MO-220 K, variant

VJJC-2. The package is classified to Moisture Sensitivity Level 3 (MSL 3) according to JEDEC J-STD-020 with a soldering peak temperature of (260+5)°C.

Note: Thermal resistance junction to case R_{th,jc} is 5 K/W, based on JEDEC standard JESD-51-6 and JESD.

Figure 6-1: Package Outline

Table 6-1: Package Characteristic	s
-----------------------------------	---

Description	Symbol		mm			inch	
		min	typ	max	min	typ	max
Package height	А	0.80	0.90	1.00	0.031	0.035	0.039
Stand off	A1	0.00	0.02	0.05	0.000	0.00079	0.002
Thickness of terminal leads, including lead finish	A3	0.20 REF		0	0.0079 REF		
Width of terminal leads	b	0.25	0.30	0.35	0.010	0.012	0.014
Package length / width	D/E	ļ	5.00 BSC	;	(0.197 BSC	
Length /width of exposed pad	D2 / E2	3.50	3.65	3.80	0.138	0.144	0.150
Lead pitch	е	0.65 BSC		(0.026 BSC		
Length of terminal for soldering to substrate	L	0.35	0.40	0.45	0.014	0.016	0.018
Number of terminal positions	N		20			20	

Note: the mm values are valid, the inch values contain rounding errors

Production Data – May 15, 2018

7 Typical Applications

Figure 7-1: Block diagram on L0

Table 7-1: External Components

Symbol	Value	Unit	Description
R _{PWM}	470	Ω	PWM input series resistance
Срум	10	nF	PWM ESD protection capacitance
R _T	10	kΩ	pull-down resistance
R _{JTAG}	10	kΩ	pull-up resistance
C _{cer,VS}	100	nF	ceramic VS blocking capacitance
C _{vs}	>10	μF	VS blocking capacitance
C _{VDD}	1	μF	ceramic VDD blocking capacitance
	10	nF	ADC reference blocking capacitance
D _{prot}			reverse polarity protection diode

Remark

The voltage at VS and at VBRIDGE must be identical. Please connect the corresponding supply rails to the same voltage. Connecting VS and VBRIDGE to different voltages results in incorrect low voltage shut down behaviour of the bridge.

8 Revision History

Table 8-1: Table of Revisions

Rev.	Chapter	Description of change	Changed by	Date
03	all	Revision for PPAP	KFH/ZOE	15.05.2018

Production Data - May 15, 2018

E523.81

9 General

9.1 WARNING - Life Support Applications Policy

Elmos Semiconductor AG is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Elmos Semiconductor AG products, to observe standards of safety, and to avoid situations in which malfunction or failure of an Elmos Semiconductor AG Product could cause loss of human life, body injury or damage to property. In development your designs, please ensure that Elmos Semiconductor AG products are used within specified operating ranges as set forth in the most recent product specifications.

9.2 General Disclaimer

Information furnished by Elmos Semiconductor AG is believed to be accurate and reliable. However, no responsibility is assumed by Elmos Semiconductor AG for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Elmos Semiconductor AG. Elmos Semiconductor AG reserves the right to make changes to this document or the products contained therein without prior notice, to improve performance, reliability, or manufacturability.

9.3 Application Disclaimer

Circuit diagrams may contain components not manufactured by ELMOS Semiconductor AG, which are included as means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. The information in the application examples has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of ELMOS Semiconductor AG or others.

Production Data - May 15, 2018

10 Contact Info

Headquarters Elmos Semiconductor AG Heinrich-Hertz-Str. 1 • D-44227 Dortmund (Germany)	[@] : + 492317549100	⊠: sales-germany@elmos.com	. www.elmos.com
Sales and Application Support Office North America Elmos NA. Inc. 32255 Northwestern Highway • Suite 220 Farmington Hills MI 48334 (USA)	啻: +12488653200	⊠: sales-usa@elmos.com	
Sales and Application Support Office China Elmos Semiconductor Technology (Shanghai) Co., Ltd. Unit 16B, 16F Zhao Feng World Trade Building, No. 369 Jiang Su Road, Chang Ning District, Shanghai, PR China, 200050	☞: +86216219 7502	⊠: sales-china@elmos.com	
Sales and Application Support Office Korea Elmos Korea Office: C-301, Innovalley, 253, Pangyo-ro, Bundang-gu, Sungnam-si, Gyeonggi-do, 13486 Korea	: +8231 714-1131	⊠: sales-korea@elmos.com	
Sales and Application Support Office Japan Elmos Japan K.K. Tamachi 16th Fujishima Bldg. 6F 4-13-4 Shiba, Minato-ku, Tokyo, 108-0014, Japan	≝: +81334517101	⊠: sales-japan@elmos.com	
Sales and Application Support Office Singapore Elmos Semiconductor Singapore Pte Ltd. 3A International Business Park #09-13 ICON@IBP • 609935 Singapore	≊: +65 6908 1261	⊠: sales-singapore@elmos.com	

© Elmos Semiconductor AG, 2018. Reproduction, in part or whole, without the prior written consent of Elmos Semiconductor AG, is prohibited.

11 Contents

Table of Content

Features	
Applications	1
General Description	1
Ordering Information	1
Typical Operating Circuit	1
Functional Diagram	2
Pin Configuration	2
Pin Description	
1 Absolute Maximum Ratings	4
2 ESD	
3 Recommended Operating Conditions	6
4 Electrical Characteristics	7
4.1 Clock System	7
4.2 I/O Peripherals	7
4.2.1 PWM Speed Input	7
4.2.2 Low Voltage Digital I/O Pins	7
4.3 PMSM Motion Control Unit	7
4.3.1 Speed Control	7
4.4 System Control	8
4.4.1 Error Detection and Behaviour	
4.4.1.1 High Temperature Speed Reduction and Shut Down	8
4.4.1.2 Low Load Detection	
4.5 Power Supply	8
4.5.1 VDD Supply	8
4.6 Integrated Motor Bridge	8
4.6.1 "Small" Bridge Parametrical Description	8
4.7 Monitoring and Measurements	g
4.7.1 Temperature Monitoring	g
4.7.2 VS Measurement	g
5 Functional Description	
5.1 Overview	10
5.2 Block Diagrams	
5.3 System Level Motor Interface and Error Interface	11
5.3.1 Motor Interface	
5.3.1.1 Goal Speed Input	
5.3.2 Error Interface	
5.3.3 TACHO Output	
5.4 Clock System	
5.5 I/O Peripherals	
5.5.1 PWM Speed Input	17
5.5.2 Three Level Test Pin	
5.6 PMSM Motion Control Unit	
5.6.1 PMSM Control Principle	
5.6.1.1 Startup	
5.6.1.2 Closed Loop Control	
5.6.2 State Machine	
5.6.2.1 State Off	
5.6.2.2 State Forward Synchronisation	
5.6.2.3 State Current Rampup	
5.6.2.4 Rotor Settling	
5.6.2.5 State Startup RPM Ramp	
5.6.2.6 State Closed Loop Control 1	24

5.6.2.7 State Forward Synchronisation	
5.6.2.8 State Closed Loop Control.	
5.6.3 Speed Control.	
5.6.4 Phase Voltage Generation	
5.6.4.1 PWM Generation	
5.6.4.1.1 Principle	
5.6.4.1.2 Current Measurement Trigger Generation	
5.6.4.2 Averaged Voltage Generation.	
5.6.4.2.1 Look up Table	
5.6.4.3 Look up Table Address Generation	
5.6.4.4 Speed Ramp Generator	
5.6.4.5 PII Prescaler Adjust Unit	
5.6.4.6 Fundamental Frequency Base Generation	
5.6.5 ADC Calculations 5.6.5.1 ADC Current Measurement	
5.6.5.1.1 Current Filter	
5.6.5.2 BEMF Measurement and Calculation	ວ∠ ວວ
5.6.5.2.1 Phase Voltage Measurement	
5.6.5.2.2 BEMF Calculation 5.6.6 Current Control/Limitation	
5.6.7 Stall Detection	
5.6.7 Stall Detection	
5.6.7.2 Field Speed Based Stall Detection	
5.6.7.3 Motor Constant Based Stall Detection	ວວ
5.6.7.4 Synchronisation Based Stall Detection	00 77
5.6.7.5 Current Zero Crossing Observation	
5.6.8 Current Direction Detection.	
5.6.9 Angle Controller	
5.6.9.1 Goal Angle Calculation.	
5.6.9.2 Angle Difference Calculation	
5.6.9.3 Generator Detection	
5.6.9.4 Frequency Correction	
5.6.10 Motor Synchronisation.	
5.7 System Control.	
5.7.1 Power up Behaviour	
5.7.2 Error Detection and Behaviour.	
5.7.2.1 High Temperature Speed Reduction and Shut Down	
5.7.2.2 High Temperature Current Reduction	
5.7.2.3 Low Load Detection	
5.7.2.4 Rotor Blockage Detection and Reaction.	
5.7.2.4.1 Detection	
5.7.2.4.2 Reaction	
5.7.2.5 Short Circuit Reaction.	
5.8 System Configuration	
5.8.1 Debugging and Configuration Interface	
5.8.1.1 Control and State Machine Disabling Functions	
5.8.1.2 Observing Special Internal Signals.	
5.9 Power Supply	
5.9.1 Supply Overview IC Supply Only	
5.9.2 VDD Supply	
5.9.3 References	
5.10 Integrated Motor Bridge	
5.11 Monitoring and Measurements	
5.11.1 Monitoring Principle	
5.11.2 Temperature Monitoring.	

5.11.3 VS Measurement	
5.11.4 BEMF Measurement	54
5.11.5 ADC Reference	54
5.12 OTP	54
6 Package Reference	61
7 Typical Applications	62
8 Revision History	63
9 General	64
9.1 WARNING - Life Support Applications Policy	64
9.2 General Disclaimer	
9.3 Application Disclaimer	
10 Contact Info	
11 Contents	
Illustration Index	
	4
Figure 1: Block diagram on L0.	1
Figure 1: Block diagram on L1 (IC, functional blocks)	
Figure 1: Pin Configuration	
Figure 5.2-1: Block diagram on L0	10
Figure 5.2-2: Block diagram on L1 (IC, functional blocks)	
Figure 5.3.1.1-1: Goal speed vs. input duty ratio	
Figure 5.3.1.1-2: Goal speed vs. input voltage	
Figure 5.3.2-1: Ok message	
Figure 5.3.2-2: Error message	
Figure 5.3.3-1: TACHO output signal	
Figure 5.5.1-1: PWM speed input structure	
Figure 5.6.1.1-1: Start up current control	
Figure 5.6.1.2-1: Closed loop control principle	
Figure 5.6.1.2-2: Single phase equivalent circuit	
Figure 5.6.1.2-3: Phasor diagram of voltages and current of 5.6.1.2-2	19
Figure 5.6.2-1: State diagram, no initial position detection	
Figure 5.6.3-1: Speed controller topology	26
Figure 5.6.4-1: Phase voltage generation principle	
Figure 5.6.4.1.1-1: Center aligned PWM principle	29
Figure 5.6.4.1.2-1: Current measurement events	30
Figure 5.6.5.1-1: Current measurement principle	32
Figure 5.6.6-1: Current control principle	34
Figure 5.6.7.3-1: Motor constant based stall detection principle	36
Figure 5.6.7.4-1: Synchronisation based stall detection principle	38
Figure 5.6.9-1: Angle controller principle	39
Figure 5.6.9.1-1: Goal angle dependency	39
Figure 5.6.9.4-1: Frequency correction calculation	
Figure 5.6.10-1: Synchronisation sequence	
Figure 5.7.2.1-1: Temperature speed reduction and shutdown behaviour	
Figure 5.7.2.2-1: High temperature current reduction	
Figure 5.9.1-1: Power supply principle	
Figure 5.10-1: Half bridge block diagram	
Figure 5.11.1-1: Analog Monitoring Principle (Internal Bridge)	
Figure 6-1: Package Outline	
Figure 7-1: Block diagram on L0	