
INTRODUCTION

With 8.4 billion connected “things” having shipped in 2017, the internet of tomorrow is clearly upon us. We
have entered a new age of human to machine interactions where technology is guiding many aspects of
our lives. For a variety of end devices such as wearables, home monitoring nodes and industrial controllers,
the capabilities of the embedded processor play a vital role in addressing the insatiable demand for a
higher order of functionality. This has led to industry focus on machine learning enabled by vision and audio
processing to bring the computation needed to make decisions at the edge node. These capabilities require
elevated levels of processing performance and memory space for MCUs. The push for processing has led
to a new breed of semiconductor device which does not fit into a traditional definition of a microcontroller.
The ‘Crossover Processor’ integrates attributes of a microprocessor such as higher CPU speeds, multimedia
interfaces and expandable memory into a microcontroller form factor built for cost effectiveness and fastest
development time. This new crossover processor class of device provides embedded developers the ability to
solve many problems in today’s fast-moving technology markets.

Collaboration between semiconductor manufacturers and memory vendors plays a vital role in ensuring
that the embedded systems that are brought to market achieve performance and usability goals. This is
accomplished by closing the gap between the typical embedded flash device and the crossover MCU with
external memory. Using external memory, crossover processors have the ability to support massive amounts
of software and data memory space. This is done with keeping the same look and feel of a traditional
embedded flash microcontroller. Together, the right serial flash memory coupled with a capable processor
address the challenges of performance, security, power consumption and development experience.

For the processor, considering eXecute-in-place (XiP) from the start of the semiconductor chip design brings
together a microarchitecture that is built for memory expansion. For serial flash, there are advancements in
the interface protocol, low energy read of memory, and read while write programming capabilities to address
these challenges. This paper will provide an overview of how performance and usability are addressed for
systems depending on external memory. The following sections will explore how the Adesto EcoXiP serial
flash and the i.MX RT1050 crossover processor pair together to provide the embedded platform needed to
conquer the challenges of future embedded designs.

CROSSOVER TO MEMORY EXPANSION
WITH ADESTO ECOXiP AND NXP’S
i.MX RT CROSSOVER PROCESSORS
Donnie Garcia, NXP Semiconductor: Solutions Architect

Eyal Barzilay, Adesto Technologies: System and Software

 2

TABLE OF
CONTENTS
Crossover to Memory Expansion with Adesto’s
EcoXiP and NXP’s i.MX Crossover Processors 1

Introduction 1

Overview of Serial NOR Flash and eXecute in
Place (XiP) 2

Microcontroller Memory Architectures 2

How XiP is Achieved 3

FlexSPI Memory Controller 4

Adesto EcoXiP: Advanced Serial Flash 5

Application Use cases 7

i.MX RT: Advanced Processor Architecture 9

Understanding XIP Performance 10

Throttling Test Case 11

Instrumenting Test Case 12

Examining Example Applications 14

Development and Debug with XiP 14

Conclusions 15

Resources 15

 3

OVERVIEW OF SERIAL NOR FLASH AND EXECUTE IN PLACE

Serial NOR flash comes in the form of integrated circuits (ICs) with a range of memory size and physical
interface options. These memory devices typically operate at 1.8V or 3.3V, support 100 thousand write erase
cycles, and can easily be placed on printed circuit boards. The serial flash IC allows embedded systems to
easily introduce a non-volatile memory (NVM) with various packages ranging from the basic 8-pin to very
small chip scale. There are many use cases for applying serial NOR flash to a system. Persistent data logging
is one example of a common application use case which benefits from this technology. Another important
use is storing and executing software for the ever growing embedded applications.

The eXecute in Place, or XiP, is a capability that allows a processor to execute code directly from external
flash memory. Many embedded applications require connectivity stacks, audio processing, and vision. The
amount of executable code for these functions has grown to substantial sizes. When considering these
application requirements together for one embedded system, the capability of XiP with external flash is an
essential enabler as it allows nearly limitless data space for the embedded system. In the semiconductor
industry, thousands of capable microcontrollers are already integrating the type of memory controller
needed to support XiP cability from Serial NOR flash.

Microcontroller Memory Architectures

For embedded processing, there are several common memory architectures as shown in Figure 1. Starting
from the left, for most microcontrollers, internal non-volatile memory provides the execution space for
the software. Here the NVM is all provided internal to the chip. There are advantages due to the system
integration, but a limitation with regards to scalability. If the system needs more memory than what is
provided internal to the processor, then external memory must be added. Often, external memory (such as
EEPROM) is needed to store persistent data for other uses in the system as shown in the diagram.

The second architecture in the middle, is a copy-to-execute architecture. This means that the code is stored
in external flash but copied to internal RAM at startup and then executed. In this case external NVM is used
in conjunction with execute memory in RAM. This architecture, will be limited by the size of the internal
SRAM memory. If the size of code is larger than internal SRAM, software must bring in portions of code
as needed by the application. This copy to execute has penalties with regards to copy time and software
complexity. Large internal SRAM size could have a significant impact on cost. Alternatively, if external DRAM
is used, system cost can be reduced because of the low cost per bit for DRAM versus internal SRAM.

When using DRAM there are challenges with regards to power consumption. This is due to the volatile
nature of the DRAM memory and the need for self-refresh for low power states of DRAM. Even if the code
fits into SRAM, a low-power system would probably require shutting down the SRAM during sleep mode.
This means that a copy to SRAM would be necessary on each transition from sleep to active mode. In other
words, the system will be slow to wake up.

Internal NVM

CPU

I$/D$

SPI

EEPROM

Execute
Memory
FLASH

Execute
Memory
FLASH

External Execute
in Place (XIP)

CPU

I$/D$

SPI

Copy to Execute

CPU

SPI

EEPROM

Execute
Memory
FLASH

MemCtrl

Execute
Memory

Ext. DRAM

Figure 1: Memory architecture diagrams

 4

Furthest to the right, the XiP architecture depends on the external memory for the execution of code. This
memory architecture has advantages with regards to scalability. Designers do not have to face issues with
over buying for a larger memory size to protect against software growth. The choice of external memory
can be made for what is needed for the embedded design. This ensures that every penny spent on the
processor components in the system goes towards relevant features for the end product. This architecture
reduces both risk and design cycle times as the XiP system architecture can be scaled with only a change
to the serial NOR flash in the bill of materials for the circuit boards. In addition, XiP brings an advantage in
terms of power and fast wakeup from sleep mode.

Still, there are challenges when using this architecture. In the coming sections, we will discuss how these
challenges are being mitigated by intelligent designs incorporated for both the processor and the serial
flash.

How XIP is achieved

Central to the support of XiP is the integration with a smart SPI (Serial Peripheral Interface) host controller on
the processor. Akin to a standard SPI, these host controller peripherals support a synchronous serial protocol
that depends on data and clock signals. For example, Figure 2 shows the most basic SPI read where an
opcode and address are sent to a slave device via Serial In (SI), and data is returned to the master device via
Serial Out (SO).

Figure 2: Example SPI data transfer

In addition to operating as traditional SPI, in order to better support the XiP use case, these enhanced
peripherals also operate as system memory controllers. They can take internal bus transfers generated in
the chip and translate them into the right serial commands needed to interact with the external memory. In
this way, data transfers from the external memory are accelerated by hardware. The instructions and data
residing in external serial NOR flash are directly fed into the CPU pipeline or other chip peripherals based on
memory transfers occurring inside the microarchitecture of the chip.

FlexSPI Memory Controller

One such memory controller is the FlexSPI. FlexSPI is NXP’s latest generation of the serial flash memory
controllers. The block diagram in Figure 3 represents the FlexSPI which is integrated on the i.MX RT
crossover processors. The 64bit AHB bus is the interface to the system bus which will come from a CPU or
other on-chip masters such as an LCD controller. The IPS BUS is a separate interface which allows software
to directly send commands to the NOR flash device by way of the FlexSPI register model. This interface is
also used for the initialization and configuration of the external serial flash as it can be used to initiate the
process of sending commands.

The capabilities of the i.MX FlexSPI memory controller enhance XiP. In the diagram, just to the right of
the AHB_CTL block, both transmit (TX) and receive (RX) buffering are shown. This buffering is used for
prefetching data when reading the external memory to improve latency and overall compute performance
for the XiP operation.

 5

IP_CTL

ARB_CTL
(Arbitrator)

SEQ_CTL
(Sequence) IO_CTL

IP_RX_FIFO
IP_RXF_CTL

IP_RX_FIFO
IP_TXF_CTL

CDC_SYNCH
(Clock domain

Cross)

AHB BUS
64-bit

SPI Bus
FA Port

SPI Bus
FB Port

AHB_CMD

Data Data

Data Data

ARB_CMD SEQ_CMD

IP_CMD

IPS BUS
32-bit

Data

Data

Data Data

Data Data

Data Data

Data Data

AHB_CTL
AHB_RX_BUF

AHB_TX_BUF

TX_FIFO
ASYNC

RX_FIFO
ASYNC

Figure 3: FlexSPI Block Diagram

Shown in the diagram on the right side is the sequence control block. The sequence control block is a
large look-up table which holds preset instructions for different serial flash operations such as read, erase
and program. This block is what links accesses from the 64-bit AHB bus to the read command sequence
which is sent to the external serial flash. Not every flash will have the same command set or I/O interface.
The sequence control engine is programmable for adjusting the SPI transfers based on the command set
defined by the serial flash. This allows processors like the i.MX RT to interface to a broad range of external
flash types and capabilities. This flexibility allows the crossover processor to utilize flash attributes that play
an important role in supporting the most capable XiP embedded systems.

ADESTO ECOXIP: ADVANCED SERIAL FLASH

Serial flash is not only for storing code and data but also for executing code directly from flash (Execute-
in-Place or XiP). Advancements in serial flash technology have made it possible for newer serial flash to be
used in systems with high performance requirements. These advancements allow serial flash devices such
as Adesto EcoXiP to respond quickly to read requests from the host MCU and deliver instructions and data
with low latency and high throughput.

One advancement is the multi-line SPI interface. Traditionally, communication with a serial device was (as
the name suggests) serial. Data would be transferred over a single line at a time. For more capable devices,
communication is parallel, and data is transferred over up to eight data lines as shown in the Octal-SPI
transfer diagram in Figure 4. Adesto’s EcoXiP devices are equipped with JEDEC’s latest Octal SPI protocol
(xSPI), making the communication close to 8x faster than a single wire serial flash.

Figure 4: Example Octal-SPI Data Transfer

 6

Supplementing the Octal interface, serial flash can feature double data rate (DDR). This capability is more
common in high-speed DRAMs. With DDR, data bits are sampled on both the rising and falling edges of
the serial clock. Since it takes only half a clock cycle to send out a data bit, this feature has the potential to
double the throughput from the external memory. In addition, modern serial flash devices deliver high clock
speeds north of 100MHz. This is achievable due to a data strobe signal driven by the flash during the data
phase of a read.

To address latency, Adesto EcoXiP supports features to reduce the overhead of the command interface.
Latency is the time from when there is a request for data until the time that the data is available to the
requestor. EcoXiP supports special read commands such as Read Array to allow faster access to data by
reducing the number of clocks needed for subsequent reads of data. As shown in Figure 5, the Read Array
command with Octal SPI and DDR reduces the number of clock cycles needed for passing the command
and address data. An 8-bit command and 24-bit address are passed with only 3 clocks. Then subsequent
accesses to sequential data are available. All of these serial flash features (read array command, DDR, fast
clock speeds and Octal SPI) work to support the XiP use case.

Figure 5: Read Array Command

Application use cases

Beyond addressing the performance of eXecute in Place operation, there are other unique features in
EcoXiP to support application use cases. EcoXiP’s concurrent read-write, also known as read-while-write
or RWW, allows the host processor to continue reading from a partition of the flash memory array while
modifying data on another part. As an example, periodic logging of data which involves erase and program
operations to the serial flash does not put the XiP program on hold. With the RWW feature, instruction and
data fetching during programming continues as usual in a different partition of the flash. This scheme allows
read operations from one bank while the device is busy programming or erasing another bank. The serial
flash device can be configured into two banks: Bank A and Bank B. The border between the banks can be
set with a granularity of 1/8th of the full flash array size. Read commands to one bank can be done while a
write is in progress in the other bank.

The XiP architecture also provides advantages to systems which leverage power-down modes to save energy.
Unlike execute-from-RAM scenarios, wake up from very low-power modes is much faster. There is no need
to copy from a non-volatile memory device into the SRAM execution memory. The system can be set to start
executing immediately from external flash. The flash standby power consumption is significantly lower than
DRAM systems due to NOR flash memory technology.

In general, the serial flash leakage of Adesto’s memory devices is so low that there is no need to turn the
flash completely off. Devices like EcoXiP offer deep power-down and ultra-deep power-down modes which
result in an extremely low power consumption with only a small impact to wake up time. As shown in Table
1, there are power modes as low as 200 nanoAmps. The end energy consumption (current over time) is
significantly lower than what would be required to copy the code into RAM for DRAM based architectures
which may require self-refresh.

 7

Parameter EcoXiP Specifications

Densities 32 Mbit (4 MByte), 64 Mbit (8 MByte),
and 128Mb (16 MByte)

Interface Quad/Octal, SDR/DDR

Read Bandwidth (max) 133 MBs

Power Supply 1.7V – 1.95V

Max. Operating Frequency 133 MHz

Temperature Range (Ta) -40 °C - 85 °C

Temperature Range (Tj) -40 °C - 105 °C

Supply Current (Ultra Deep Power Down) 200 nA

Supply Current (Deep Power Down) 4 µA

Supply Current (Standby) 35 µA

1.8V Supply Current – Octal DDR 35 mA

1.8V Supply Current (Program/Erase) 15 mA

Table 1: Adesto EcoXiP Specifications

When not in power-down mode, EcoXiP offers competitive power consumption for active mode while
reading from memory and sending data to the host processor. The savings can be as much as half compared
to similar Octal SPI devices in the market. For 133MHz Octal SPI reads, the Adesto EcoXiP read current is
typically 35mA.

Flash devices offer security features as well. For example, EcoXiP contains a specialized OTP (One-Time
Programmable) security register that can be used for purposes such a unique device serialization, system-
level Electronic Serial Number (ESN) storage, locked key storage, etc. This register can be programmed
but not erased, so only a one-direction transition is possible for each bit. In addition, this register can be
permanently locked.

Flash devices are supported by the embedded development ecosystem in different ways. EcoXiP provides
flash-loader plug-ins for various embedded tool chains. The flash loader is engaged by the integrated
development environment once it detects that a program’s binary image, or part of it, falls into the flash
memory address range. It will initialize the flash and erase and program memory regions on-demand
as requested by the host tool. In this context, it’s worth mentioning a new feature called Serial Flash
Discoverable Parameter (SFDP) which provides useful information about the flash in a standardized way. This
allows the host to automatically figure out flash attributes and set it up the interface accordingly. In theory,
one could develop a universal flash loader which would work on all serial flash devices. An update of SFDP
to support the new Octal-SPI (xSPI) standard has been recently ratified by a JEDEC committee JC42.

I.MX RT: ADVANCED PROCESSOR ARCHITECTURE

Contributing to the support of the external serial flash in embedded systems are the advanced processor
architectures which are now available. For example, the i.MX RT crossover processor is built with the highest-
performance Arm® Cortex-M® processor, the Arm Cortex-M7. This CPU can execute up to two instructions
every clock cycle and supports 6-stage pipelining, improving computational ability versus other CPUs in
its class. The high-performance CPU ensures that even though slower memory accesses may stall the CPU,
the high compute power is delivered when data is made available. In addition to the CPU, the internal bus
system associated with this class of processor is the same as what has previously been used for higher-end
controllers built with Arm Cortex-A family of devices.

 8

The diagram in Figure 6 represents the architectural details of the i.MX RT 1050 crossover processor. With
regards to cache, the i.MX RT integrates 32KB for the instruction and 32KB for the data caches. This is the
largest size in the market and reduces the CPUs sensitivity to any delays imposed by slower memories. For
the Tightly Coupled Memory (TCM), the i.MX RT has a FlexRAM block of memory. This intelligent RAM
memory controller allows customization of the TCM up to the largest sizes available on the chip. The user
can select the maximum size, or repurpose the FlexRAM to work as on-chip SRAM to be shared with other
chip peripherals. Having a large TCM allows software architects to choose this memory option for the
portions of their code which need the absolute maximum performance. Software placed in the TCM will
achieve the lowest latency access times, producing the highest performance.

600 MHz
Arm® Cortex®-M7

Processor

ITCM

DTCM

DTCM

FlexRAM

32 KB
D-Cache

32 KB
I-Cache

AXI Interconnect

AXI Slaves

AHB Interconnect

128 KB
SRAM
(32-bit)

FlexRAM

On Chip
RAM

AXI2AHB

FlexSPI
Serial Flash/
RAM/NAND

SEMC
8/16-bit SDRAM/

PSRAM/NOR/
NAND/8080

AHB Slaves

4xAIPS
Peripherals

Arm Cortex-M7
Slave Port

Other Masters

AXI Masters

128 KB
SRAM
(32-bit)

256 KB
SRAM
(64-bit)

LCD USB

Other Masters

AHB Masters

eDMA ENET

PXP
(2D processing)

DCP
(Crypto)

Camera 2xSD/eMMC
AHB2AXI AHB2AXI

Figure 6: i.MX RT Architecture Diagram

With regards to the use of the 64-bit AXI on the i.MX RT, there are a broad range of AXI masters which
are integrated onto the chip. The AXI bus is a split-transaction protocol and supports multiple outstanding
transfers. Some specific peripherals to highlight which are relevant to emerging application trends are the
camera interface and cryptographic accelerator (Data Co-Processor-DCP). These components differentiate
the i.MX RT in the market and align with the need for image processing capabilities and security. The FlexSPI
controller allows for these other masters to make use of the receive buffer. This allows the data stored in the
external flash to be quickly accessed as with the case of displaying graphics on a screen.

Finally, most relevant to the computational capabilities of the i.MX RT with external flash is the processor
speed. Reaching 600MHz allows the i.MX RT to be throttled up for the most intensive calculations. Once
data is available to the processor, it is processed at the CPU speed. With all of these capabilities working
together, the end result is a processor using XiP that can achieve high performance and is expandable to
a nearly limitless memory footprint. Figure 7 details how the CPU and the FlexSPI work together to reduce
stalling the flow of application code. Starting at stage 0, the figure represents the case of a full miss of the
target data and subsequent prefetching done by the FlexSPI. The stages show how the levels of cache and
buffers have to be missed to stall the CPU.

 9

TPIU

Clock
Control

DFT
Control

MCM

TSGEN
ROM
Table

DTCM0ITCM OCRAMDTCM1

FlexRAM (512 KB)

Cortex M7

Trace Port (4-bits)

MPU ITM

CTI

ETM

ROM
Table

DPU

FPU

I$
32 KB

D$
32 KB

SWJ
DP

AHB
AP

DAP 1 KB
Pre-Fetch

Buffer

Serial
Flash

FlexSPI

0: CPU fetches a target address for
instruction or data

1: CPU Cache is checked for target
address

2: Cache miss leads to bus access
at target address

3: Bus access seeks data from
FlexSPI buffer

4: Prefetch buffer miss leads to
FlexSPI read sequence for pre-
initialized read command to
external Flash

5: High performance serial flash
reduces access latency with high
speeds, double transfer rates and
up to 8 data lines

6: The prefetch from the FlexSPI
accelerates all subsequent reads,
even a full miss, with no cached
data will be accelerated by
prefetching

Figure 7: XIP Memory Access Stages

UNDERSTANDING XIP PERFORMANCE

As detailed in the previous sections, the technology associated with the processor and the external NOR
Flash memory is built to obscure the latencies involved with using XiP. This presents a challenge with
regards to fully understanding the performance impact for this architecture. For example, with the FlexSPI
receive buffer, each read access made to the serial flash can range from one cache line (32 bytes for the
Arm Cortex-M7) up to the full size of the receive buffer. The receive buffer is 1KB for the i.MX RT1050
processor. The maximum size of the read transaction to completely fill the receive buffer is preset as part of
the configuration of the FlexSPI.

Due to the receive buffer, smaller code loops, such as an iterative mathematical calculation, or a case
statement, after a few cache lines are pulled from external memory, the processor no longer depends
on additional data. At this point, the processor will be executing from buffered data. The receive data
continues to be drawn from the serial flash to fill the buffer size that has been preset. Because of this,
traditional methods of monitoring memory accesses as an indication of performance do not apply. High
performance is achieved even with high access rates to the external memory. Performance cannot be
directly correlated to the amount of external memory accesses made by the system.

In addition, many standard industry benchmarks are relatively small programs. These programs often fit in
the caches integrated on the processor. As such, they don’t represent full scale applications which push
memory size boundaries. Thus, in order to understand the expected performance levels for XiP, various
methods have to be applied. These are divided into the following three cases: throttling, instrumenting and
evaluating example application code.

Throttling Test Case

The throttling test case simulates a scenario where a change in program execution would result in processor
accesses which are all outside the CPU cached data. For throttling test cases, the industry standard
benchmark EEMBC CoreMark® is used. This benchmark is first placed in zero latency TCM to produce the
ideal case CoreMark score. This is the control measurement. Then, the benchmark is run in external serial
flash while periodically invalidating the instruction cache at set intervals. This method has the advantage of
relating to a standard benchmark (CoreMark). The generated results can be compared to many number of
publicly posted results that are hosted by EEMBC.

The drawbacks to this method are that for typical application code, such drastic changes to program flow
would rarely lead to a scenario where all of the CPU instruction cache would be invalidated. Estimating the
rate at which the cache should be invalidated is challenging. Regardless of these limitations, this test case
provides insight into how the technology enables high performance with XIP. The results show that with
feature rich serial NOR flash devices such as the Adesto EcoXiP set for Octal SPI and double data rate,
performance is only slightly affected by the CPU cache invalidation events.

 10

Figure 8 shows measurements taken with various cache invalidation rates (1ms, 500us, 250us and 125us).
There are two different serial flash conditions: the orange line represents a a single data rate, 4 I/O serial
flash, and the blue line represents the Adesto EcoXiP set for Octal SPI and DDR. The chart shows the
performance advantage of high performance serial flash like Adesto EcoXiP versus slower, lower pin count
flash. Considering the 1ms invalidation rate, there is just over a 3% impact to the CoreMark benchmark.
The 1ms condition is a relevant test case as the typical RTOS tick rate is set to 1ms. Even lower-performing
serial flash devices represented by the orange line have a minimal impact at this rate, delivering 88% of the
CoreMark score versus the ideal case. When considering more extreme cases where CPU cache invalidation
occurs 8 thousand times per second for example, the higher-performance technology delivers nearly 83% of
the performance compared to the ideal case.

2445

2616

2770

2857

2950

1490

1868

2241

2599

2950IDEAL CASE

COREMARK - 1 ms I$ INVALIDATE

COREMARK - 500 us I$ INVALIDATE

COREMARK - 250 us I$ INVALIDATE

COREMARK - 125 us I$ INVALIDATE

EEMBC CoreMark Throttling

Quad-SDR 102 MHz

0 500 1000 1500 2000 2500 3000 3500

Octal-DDR 131 MHz

Figure 8: Throttling CPU Cache Results

For the case of invalidating the CPU cache every 125 microseconds, the end result still achieves a 2,445
CoreMark score. This is significantly higher than many other processors in the market.

Instrumenting Test Case

In order to evaluate performance without using a drastic cache invalidation, code can be instrumented
in a way to allow cache misses to occur more naturally. For the instrumenting test case, a large block of
code is placed in sequential address space which is larger than the size of the CPU cache. So when there
is a cache miss, it is due to a more natural software execution scenario. This method involves creating a
number of smaller loops which can be set to execute a variable number of times (n). These smaller loops
are concatenated together to create a sequential code block that is larger than the CPU cache. When the
smaller loops are executed more frequently, by setting larger values of n, there are more cache hits. When
the smaller loops are executed less frequently, then there are more cache misses.

Figure 9 is a graphical representation of this method. For the purpose of creating a measurement to
evaluate, Fibonacci calculations were used. As shown in the diagram, the processing of each block always
requires one pass of the Fibonacci calculation loop leading to cache misses for that pass. When the CPU first
reaches a Fibonacci block, the first iteration will be cache misses, but all subsequent passes will be executed
from cached data. For the case of n = 10, the first Fibonacci calculation is a miss and the subsequent 9
Fibonacci calculations are cache hits. For the case of n = 30, the first Fibonacci calculation is a miss and the
subsequent 29 Fibonacci calculations are cache hits.

 11

n Fibonacci 2

n Fibonacci 1023

I-C
ac

he

n Fibonacci 1

n Fibonacci 1024

Figure 9: Instrumented Code

Measurements were taken for 10, 20 and 30 iterations of the Fibonacci calculations. Measurements of the
total number of Fibonacci calculations are taken with different memory space location and different types of
serial flash. Higher performance is represented by a higher number of Fibonacci calculations. As shown in
Figure 10, at 30 iterations, the impact to the number of Fibonacci calculations is just over 15% reduction.

FIB - 30 ITERATIONS PER LOOP

FIB - 20 ITERATIONS PER LOOP

FIB - 10 ITERATIONS PER LOOP

Fibonacci Comparison

Quad-SDR 102 MHz

0 5000 10000 15000 20000 25000 30000

Octal-DDR 131 MHz RAM

19448
22529

26610

20768
26357

25628
16807

6629

13142

Figure 10: Results of Instrumented Code

As the cache miss rate is increased, the data shows that having high-performance serial flash leads to less
impact than using standard serial flash. This is comparing the orange bar to the gray bar results. Though
this method allows precise control over the cache miss rate, it does not fully represent standard application
code. The cache miss rate on standard application code can vary broadly depending on use case.

Examining example applications

To overcome the limitations of instrumented code and throttling cache, running an example application in
different target memory scenarios offers additional proof points to the performance when using XiP. This test
scenario is easily accomplished because XiP is enabled through the MCUXpresso Integrated Development
Environment. (IDE). The MCUXpresso IDE projects can be created to place software into the TCM zero-
latency memory. After performing measurements, the same software can be applied to the external serial
NOR flash space and measured again. There are many example projects to choose from in the software

 12

development kits (SDKs) offered by NXP. The entire process with the measured results is detailed in a step-
by-step lab guide (see link provided in the resources section). This guide allows developers the opportunity
to explore these methods themselves. The examinations can be done with the provided SDK application
examples or with the final application software created by the developer.

For the case demonstrated by the lab guide, Arm Mbed TLS benchmarking of Elliptical Curve Digital
Signature Algorithm (ECDSA) was performed. The results show that with CPU cache enabled, for this specific
benchmark the measured difference between ITCM and using external flash does not change. Whether
executing from the best case memory, the TCM, or executing from external serial flash with XiP, the ECDSA
benchmark application shows the same results.

For a different case, when using MCUXpresso compiler optimizations set for performance, the measured
difference for ECDSA computations is shown to be less than 6% lower for the XIP case. Changing
compiler settings changes the generated machine code so that it is much more compact. The end result is
approximately a 4x improvement for the ECDSA calculations. As the code becomes more optimized, the
throughput provided by the external serial flash begins to affect the measured performance, leading to the
slight impact when using XiP.

DEVELOPMENT AND DEBUG WITH XIP

As demonstrated by the lab guide, other experiments for XiP can be performed with the enablement
provided by the MCUXpresso. For example, the speed of the external memory can be varied by changing
definitions inside the project. The MCUXpresso platform provides the tools needed to quickly examine this
and other scenarios, allowing the developer to fully leverage the benefits of the expandable XiP architecture.
For downloading and debugging application software, the MCUXpresso IDE is preset to allow a seamless
connection to the serial flash components placed on the i.MX RT Evaluation Kit. (EVK). When a debug
session is initiated by the user, the flash loader scripts are automatically used by the debug tool. In addition
to the development tools, the off-the-shelf configuration of the i.MX RT EVK hardware has both a high-
performance 8-wire SPI as well as a 4-wire SPI. With both of these serial flash options placed on the board,
the user can choose the right attributes for their end design.

Figure 11: Selecting Adesto Serial Flash

 13

When importing SDK projects into MCUXpresso, the choice of the serial flash hardware is made based
on the memory settings in the memory configuration editor. The lab guide provides the detailed steps to
choose the Adesto flash during the import as highlighted in Figure 11. With a special edition of the i.MX RT
EVK that has the Adesto EcoXiP placed on the board, nearly all of the SDK examples can be run and debug
with the Adesto external flash. The operation of the enablement tools with the crossover processor is just as
it would be for a traditional microcontroller which contains embedded flash.

CONCLUSIONS

External memory for an embedded processor offers a scalable platform aligning to the challenges of
today’s embedded systems. When using external serial flash memory, success can be achieved with the
right processor and memory technology. Modern Arm CPUs integrate cache that greatly enhances the use
of external memory. In addition, processor designs are architected to use execute in place with memory
controllers, such as the FlexSPI memory controller which provides buffering and prefetch. Coupling this
with the enhanced capabilities offered by serial NOR flash addresses cost, power, performance and security
challenges. Furthermore, the infrastructure provided by tools such as MCUXpresso allows developers the
ability to get from concept to deployment quickly and efficiently.

RESOURCES

The following table includes links to resources which support developer investigation into using XIP.

Resource Description

Processor summary page The i.MX RT1050 family summary page provides links to chip documents (Data Sheet and Reference Manual)

Hardware evaluation kit The i.MX RT EVK provides a platform for embedded development. Multiple boot interfaces are supported

Software SDK The MCUXpresso SDK is the software enablement which provides drivers and middleware for the i.MX RT

Arm Cortex-M7 Whitepaper Detailed description of the Arm Cortex-M7 CPU

MCUXPresso IDE training Training material to understand the MCUXPresso Integrated Development Environment features

Using XIP Lab Guide This is the lab guide mentioned in this paper which provides the detailed steps for experimenting with XIP

https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-rt-series/i.mx-rt1050-crossover-processor-with-arm-cortex-m7-core:i.MX-RT1050?lang_cd=en
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-rt-series/i.mx-rt1050-evaluation-kit:MIMXRT1050-EVK
https://mcuxpresso.nxp.com/
http://cache.freescale.com/files/32bit/doc/white_paper/CORTEXM7WP.pdf
https://www.nxp.com/docs/en/supporting-information/APF-DES-T2744-MCUXpressor.pdf
https://community.nxp.com/docs/DOC-340818

CONTRIBUTOR

Wim Rouwet
Systems and Architecture Engineer

HOW TO REACH US:

Home Page: www.nxp.com
Web Support: www.nxp.com/support

USA/Europe or Locations Not Listed:
NXP Semiconductors USA, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.nxp.com/support

Europe, Middle East, and Africa:
NXP Semiconductors Germany GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.nxp.com/support

Japan:
NXP Japan Ltd.
Yebisu Garden Place Tower 24F,
4-20-3, Ebisu, Shibuya-ku,
Tokyo 150-6024, Japan
0120 950 032 (Domestic Toll Free)
www.nxp.com/jp/support/

Asia/Pacific:
NXP Semiconductors Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@nxp.com

www.nxp.com

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
© 2018 NXP B.V.

Document Number: NXPADESTOWP REV 0
Release Date: September 2018

