The State of Automotive Only Starts with Autonomous Driving

Display portlet menu

The State of Automotive Only Starts with Autonomous Driving

Display portlet menu

The State of Automotive Only Starts with Autonomous Driving

interior of autonomous car

Saying that the Internet of Things is revolutionizing industries is an understatement. However, change within the automotive industry is moving at a breakneck speed.

The shift towards autonomous driving is changing the solution set requirements for design engineers. Adaptability and scalability are needed to address the various stages and levels of autonomous driving.

Changing requirements aren’t the only things shaping the industry. From changing regulatory requirements to the expanding capabilities of AI-enabled platforms, engineers contend with many factors to utilize existing processing capabilities across different applications and end-use scenarios in a variety of contexts.

Why? Because the state of automotive spans a variety of applications:

Autonomous driving and ADAS

Think of the 8 million autonomous or semi-autonomous vehicles projected to be on the roads by 2025. They’ll rely on a variety of technologies to move from a human monitoring the environment to the automated system doing the work.

However, the space is seeing a gradual transition from computer vision under the current process to something much wider — with AI for collision avoidance, object detection, and tracking using edge sensors, cameras, RADAR and LiDAR.

Considering all the other technologies moving autonomous driving forward— from data aggregation and pre-processing to sensor fusion, 4D radar, and mirror replacement systems — the adoption of conditional vehicle automation to full autonomous vehicles will change driving to something more like Transportation as a Service (TaaS).

With Daimler selecting Xilinx to power all the AI in its new automotive lines, the business potential is just beginning.

In-cabin AI

Normal algorithms will not help when it comes to the short-latency, high-compute needs of the future. That’s why machine learning, neural networks and AI will change the automotive industry.

AI drives all kinds of features — from personalizing the driving experience with customized comfort level or recognizing changes in facial expressions to throw-on safety features. AI can revolutionize the entire driving experience through technology like driver monitoring systems and gesture recognition.

Remember, though, that AI can also wildly shift the experience for passengers by utilizing similar monitoring systems for those not behind the wheel. Design engineers and automotive innovators are making great strides in head-up displays and occupant monitoring systems, as well.

From a business perspective, the expectation is that automotive electronics will become the next big technology market driver. A major factor: trends that point to the automotive semiconductor market exceeding overall industry growth, as semiconductor content expands with added features and functionality.

With cars and trucks connecting to the cloud and other vehicles, in-cabin AI is poised to be one of the many reasons electronic functions will proliferate and spread from premium models to lower-priced, high-volume models.

Instrument cluster, infotainment and display

Engineers are mimicking what is available to consumers from the rest of their devices available in cars — to the tune of $37 billion by 2025. From voice control and Bluetooth connectivity to real-time updates about directions or traffic, displays are rich in features — and also rich in SBCs, LEDs, transformers, MCUs, regulators and transceivers to power infotainment displays and other dashboards.

As infotainment is becoming an expectation in most new vehicles, it’s driving higher and higher demand for portable and in-care consumer electronics, audio players and video display screens. Currently, the aftermarket segment is contributing a much larger share to this field than automobile makers themselves — meaning transportation application providers in mid-range and luxury automobiles have an opportunity to win over price-sensitive customers to higher-priced vehicles.

Beyond North America, this same opportunity exists in Germany and the United Kingdom as well as China, leading a more than 11% CAGR across Asia.


Electric vehicle adoption is on the rise, thanks to a blend of increased government regulation and also increased OEM attention, echoing the technological advancement that has powered greater customer acceptance.

From sophisticated electric and/or traction motors to some combination of off-vehicle power sources and self-contained sources such as batteries, solar panels, charging station infrastructure or electric generators, technology leaders have stepped up to offer solutions for charging systems, electric motor control and power-efficient compute.

However, to truly see a more widespread adoption of EVs, we’ll need more than just the announcements of the release 340 BEV and PHEV models in the next few years or the tight emissions targets set by legislative bodies from Europe to China. We’ll need companies to seize the opportunity to provide solutions with many of these automobiles depending on sophisticated electric or traction motors along with batteries, solar panels or electric generators.

What’s more, vehicle electrification can span less obvious applications — including air conditioning systems, steering, braking, start/stop systems and electric propulsion engines — providing even more opportunities to deliver innovative automotive applications.

The technology driving automotive’s future

So, where can design engineers go from here?

While automotive goes deeper than meets the eye to be sure, it also offers more support than most designers expect. From system-level design services to help customers get to market faster to experts who help with production-part approval processes, failure analyses, international material data systems considerations and more, organizations need an end-to-end partner with the resources and network to launch innovation — and the connection to technology that leads the industry in its adaptability.

That means the same technology that enables starting with a development platform and moving to a chip design — while never hitting a roadblock for the engineers — allows for the flexibility that line-of-business managers need to convince the C-suite that their technology choices are in it for the long haul.

Learn more about the future of the technology driving the automotive industry.

The State of Automotive Only Starts with Autonomous Driving

Display portlet menu

The State of Automotive Only Starts with Autonomous Driving

Display portlet menu
Related Articles
view from autonomous vehicle as it interprets street signs
Somewhere Between the Flintstones and the Jetsons
March 6, 2020
Learn more about developing adaptable automotive automation with Xilinx
metal nut in venier calipers measuring tool
Is best in class the only consideration for your analog design?
December 9, 2019
It’s easy to seek out the absolute top of the line when it comes to a design. Whatever the “best” part is, is probably what’s going to be the most compelling for your design, right?
The brain functions like a machine, or so according to the theory of Marvin Minsky, one of the most important pioneers of artificial intelligence.
KI-Pionier Minsky: Vorläufig tot?
March 4, 2019
Das Gehirn funktioniert wie eine Maschine, so die ­These von einem der wichtigsten Pioniere der ­Künstlichen Intelligenz. Also kann man es nach­bauen – und sich durch ein Back-up des Bewusstseins auf einem Rechner unsterblich machen.
Could our entire life simply be a computer simulation
AI-pioneer Minsky: Temporarily dead?
March 4, 2019
The brain functions like a machine, or so according to the theory of Marvin Minsky, one of the most important pioneers of artificial intelligence. In other words, it can be recreated – made immortal by backing up its consciousness onto a computer.
Mit verschiedenen Ansätzen der Datenauswertung sollen Maschinen intelligent werden.
Neuronale netze simulieren das gehirn
February 27, 2019
Mit verschiedenen Ansätzen der Datenauswertung sollen Maschinen intelligent werden. Im ­Fokus steht dabei nicht nur die Leistungsfähigkeit, ­sondern immer mehr auch eine Flexibilität, wie sie das menschliche Gehirn bietet.
Kognitive Computerassistenten helfen Medizinern bei Diagnose- und Therapieentscheidungen.
Ist KI besser als der arzt?
February 27, 2019
Kognitive Computerassistenten helfen Medizinern bei Diagnose- und Therapieentscheidungen. ­Sie sind deutlich schneller bei der Auswertung von medizinischen Informationen und erreichen ­mindestens die gleiche Präzision.
Cognitive computer assistants are helping clinicians to make diagnostic and therapeutic ­decisions
AI better than the doctor?
February 27, 2019
Cognitive computer assistants are helping clinicians to make diagnostic and therapeutic ­decisions. They evaluate medical­ data much faster, while ­delivering at least the same level of precision.
Artificial neuronal networks are playing a big role
Neuronal networks simulating the brain
February 27, 2019
Machines are being made more intelligent based on a variety of data analysis methods. The focus of these efforts is shifting increasingly from mere performance capability towards creating the kind of flexibility that the human brain achieves.
Artificial Intelligence has enormous potential for improving our lives
AI Smarter than humans?
February 25, 2019
What began in the 1950s with a conference has grown into a ­key technology. It is already influencing our lives today, and as the intelligence of machines increases in the future that influence is bound to spread much more.
The role of security in the new era of IoT innovations
Crossover Embedded Processors
By Ulrich Schmidt   -   December 17, 2018
At the heart of thousands of smart, connected IoT products are embedded processors
KI ist eine Schlüsseltechnologie, die sich in den kommenden Jahren nicht nur maßgeblich auf unser tägliches Leben, sondern auch auf die Wettbewerbsfähigkeit der gesamten Wirtschaft auswirkt.
Ist KI schlauer als der Mensch?
February 27, 2017
Was in den 1950ern mit einer Konferenz der KI-Pioniere John McCarthy und Marvin Minsky begann, ist zu einer Schlüsseltechnologie ­geworden.­ Sie beeinflusst schon heute­ ­unser Leben – und wird es mit steigender Intelligenz der Maschinen in Zu

The State of Automotive Only Starts with Autonomous Driving

Display portlet menu
Related Events
NXP Webinar: Machine Learning Discovery Solutions
Date: July 7, 2020
Location: Online Webinar, EMEA
Renesas Webinar: Embedded Artificial Intelligence / Machine Learning
Date: June 16, 2020
Location: Online, On Demand
Webinar - Ultra96 Technical Training Courses
Date: July 7, 2019
Location: Online, On Demand
Xilinx Webinar: Introduction to Machine Learning
Date: April 16, 2020
Location: Online, On Demand
EBV with ST and Xilinx @ Virtuelles Forum Künstliche Intelligenz
Date: May 14, 2020
Location: Online, On Demand
Secure your Hardware & Application Seminar with NXP
Location: Germany, Kaarst, EBV Elektronik GmbH & Co KG - Office Kaarst, An der Gümpgesbrücke 7, 41564 Kaarst
Virtual Event with Hackster: Concept to Prototype with Ultra96
Date: June 17, 2020
Location: Online, On Demand