meeting-next-generation-automotive-design-challenges

Display portlet menu

meeting-next-generation-automotive-design-challenges

Display portlet menu

Meeting Next-Generation Automotive Design Challenges

Interior of European self-driving car

By Ari Vauhkonen, Business Director, Automotive, Maxim Integrated

Thanks to engineering ingenuity and the electronic components that have become pervasive inside vehicles of all types, cars are smarter and, in many ways, safer to drive. As the automotive industry advances toward Level 5 fully autonomous vehicles, automotive engineers will have to continue driving more functionality out of vehicle subsystems that deliver safety, infotainment, and other features.

Today, many of us are already benefiting from semi-autonomous capabilities like adaptive cruise control, lane departure warning, pedestrian detection, automatic braking, and blind-spot monitors. The underlying technologies that are making these functions possible will continue to be critical to enable self-driving cars.

What enables these types of applications are high-bandwidth data links which transport incredible amounts of data from a variety of sensors—cameras, radars, and, in some cases, LiDARs to the processors. In addition, advanced power solutions supply tens or even hundreds of watts to these processors, and do so with the highest possible efficiency and accuracy to ensure these processors always operate in the most optimal state.

In addition, vehicle interiors are quickly going digital with large, high-resolution displays as consumers demand no lesser infotainment experience than what they get on their latest TV sets or personal devices. This further drives the need for high bandwidth, low-latency data links, and advanced power solutions.

Let’s take a closer look at what is needed to enable safer, smarter cars.

Fast Serial Links for Vehicle Networking
Today’s ADAS and infotainment systems require massive amounts of bandwidth to transport voluminous amounts of audio and video data. If tomorrow’s cars are to support simultaneous activities such as video conference calls, gaming, HD video streaming, and the like, then even faster serial links will be in demand. Ethernet is a common element inside cars, given its ability to transport data over a link 100x faster than a CAN bus (which is more suitable for low-bandwidth communications). Demands for transporting megapixel resolution images with low latency inside cars are outstripping the capabilities of Ethernet. What’s more, video feed running through Ethernet pipelines must be compressed at the source and then decompressed at the destination. Compression is problematic for the machine vision technology that is becoming critical for safety functions like object and pedestrian detection, as compression results in artifacts and lost information.

Maxim’s Gigabit Multimedia Serial Link (GMSL) serializer/deserializer (SerDes) technology offers an answer. GMSL SerDes links simultaneously transport HD video, audio, control information, aggregated sensor data, and Gigabit Ethernet over 15m of a single coaxial or shielded-twisted pair cabling. It meets the stringent specifications for automotive electromagnetic compatibility (EMC), and can transport multi-megapixel images without compression. A built-in spread-spectrum feature reduces EMI of the link. To address concerns over vehicle weight, the power-over-coaxial architecture of GMSL SerDes ICs eliminates the need for additional power or ground wires. Also, due to the bi-directional architecture of GMSL, a single microcontroller can program the serializer, deserializer, and all of the connected peripherals, eliminating the need for a remote-side microcontroller and its support components.

Block illustration of video streaming

Figure 1: The ability to split video streams from an SoC allows a single data stream to be split into multiple streams to drive multiple displays in an automotive information cluster (IC) and the central information display (CID).

 

Diagram showing video aggregation

Figure 2: Video aggregation example

Maxim developed a quad deserializer (MAX9286) that’s designed to work with surround-view camera clusters. The backchannel is used to synchronize the cameras so that frames are delivered in a synchronous fashion to the host.

Why Diverse Power Management is Important
The increase in powered control modules, sensors, actuators, and motors distributed throughout today’s vehicles is creating a greater need for more diverse power management and voltage regulation circuits. These ICs are needed to manage the power at the point of load in each of these devices. As an example application, let us take a look at the head unit, which supports a variety of electronic functions from its place in the console and instrument cluster. Here is where you’ll find various displays, signal routing functions, the user interface, and internal electronics. The head unit can contain as many as 10 major subsystems, making it a critical location for providing multiple DC-power rails and addressing heat dissipation. Well-regulated voltages at various current levels are needed for the processors, memories, displays, and other components. It’s essential for the DC-DC regulators to be efficient in order to minimize the associated temperature rise from the power subsystem. Regulator efficiency is also important even when the regulators are providing just a few milliamps of current to keep critical circuits functioning (examples here include keyless entry, the clock, and alarms). After all, a driver would certainly be disappointed if the car battery depletes to a level where the car can’t start if the vehicle has just been sitting in the garage for a few days or weeks. Then there’s the inherently harsh electrical and thermal environment to consider. Regulation circuitry has to resist the effects of transients that occur due to the noisy basic DC rail of the car, not to mention the transients and load dumps stemming from start-stop mode. Electromagnetic interference (EMI) must also be mitigated to prevent impact on performance of various automotive subsystems.

Block diagram of video power system

 

Figure 3. The MAX16930 provides an example of a dual buck with preboost and 20µA quiescent current. The preboost enables robust CAN bus operation during cold crank and start up. Low quiescent current minimizes the amount of discharge in the car battery during standby. The device operates 180 degrees out-of-phase at frequencies up to 2.2MHz to allow small external components, reduced output ripple, and to guarantee no AM band interference. To minimize EMI, the device provides a spread-spectrum option. The MAX16930 can be used for navigation and radio head units, as well as automotive power applications.

One approach to addressing these challenges is to use one set of linear and switching DC-DC regulators for each DC power rail required in the design. But this approach requires considerable skill in choosing the right component to meet the requirements for each rail. Based on the frequencies used in the switching regulators, EMI and interference consequences of frequency mixing could arise, impacting performance. Highly integrated, automotive-grade power management ICs (PMICs) that provide multiple DC rails are a more effective option. Maxim offers a vast variety of PMICs as well as DC-DC converters, voltage regulators, and USB charging devices for automotive power management and lighting applications. LED Drivers Help Light the Way for Safer Rides Thanks to LED lighting technology, we have brighter, smarter, and more energy-efficient automotive lighting. To ensure optimal performance, automotive LED lighting design challenges must be addressed. Consider high-brightness (HB) LEDs. In this type of lighting, inherently high switching frequency can cause EMI. EMI can also be tough to tackle in matrix lighting, where there are many LED lights in a densely concentrated space. Some of the methods to minimize EMI, unfortunately, can induce flickering. Maxim offers LED driver ICs with capabilities such as wide dimming ranges, fault tolerance, and EMI reduction. The MAX20090 single-channel HB LED controller, for example, drives a string of LEDs with a maximum output voltage of 65V, providing flexibility for boost, high-side buck, SEPIC mode, and buck-boost mode configurations. It features built-in spread-spectrum modulation for improved electromagnetic compatibility performance. In addition to MAX20090, Maxim offers a family AEC-Q100 qualified linear and switching regulators (SEPIC, boost, buck/boost) for interior and exterior automotive lighting applications.

LED Drivers Help Light the Way for Safer Rides
Thanks to LED lighting technology, we have brighter, smarter, and more energy-efficient automotive lighting. To ensure optimal performance, automotive LED lighting design challenges must be addressed. Consider high-brightness (HB) LEDs. In this type of lighting, inherently high switching frequency can cause EMI. EMI can also be tough to tackle in matrix lighting, where there are many LED lights in a densely concentrated space. Some of the methods to minimize EMI, unfortunately, can induce flickering.

Maxim offers LED driver ICs with capabilities such as wide dimming ranges, fault tolerance, and EMI reduction. The MAX20090 single-channel HB LED controller, for example, drives a string of LEDs with a maximum output voltage of 65V, providing flexibility for boost, high-side buck, SEPIC mode, and buck-boost mode configurations. It features built-in spread-spectrum modulation for improved electromagnetic compatibility performance.

In addition to MAX20090, Maxim offers a family AEC-Q100 qualified linear and switching regulators (SEPIC, boost, buck/boost) for interior and exterior automotive lighting applications.

Typical operating circuit of the MAX20090

Figure 4: Typical operating circuit of the MAX20090, which is ideal for automotive front-light applications such as high beam, low beam, and daytime running lights.

Low-Noise RF and Wireless ICs for Infotainment Applications
Vehicle infotainment systems have evolved to encompass much more than radios and navigation features. Active noise reduction, in-vehicle connectivity, security systems, and visual sensors like back-up cameras are all grouped into the infotainment category. Traditional infotainment architectures have had separate analog and digital RF blocks serving as signal sources and connected to a multimedia processor that feeds audio and visual displays and speakers. This architecture works well but is expensive to design and manufacture and can be a burden in terms of space and power consumption.

What today’s and tomorrow’s vehicles need is an architecture that minimizes power and footprint. Maxim’s highly integrated radio, navigation, and television tuners and receivers deliver low power and low noise in small packages for vehicle infotainment systems. Low-noise amplifiers support applications including remote keyless entry, navigation, telematics, and active antennas. The company’s GPS, GLONASS, Compass, and Galileo front-end ICs simplify the design of navigation systems.

Simplified block diagram of MAX2181

Figure 5: Simplified block diagram of MAX2181, an example of a highly integrated FM variable-gain low-noise amplifier for automotive FM and FM-diversity active antenna applications.

High-Performance Analog ICs for the Signal Chain
Closed-loop signal-chain control is enabling automated capabilities that are enriching the functions in vehicles. Features such as antilock brakes, cruise control, automatic transmissions, and traction controls all utilize the signal chain. Another example of an automotive signal chain is the electronic control unit (ECU), which controls the engine as well as the features just noted. The ECU provides a good example of a signal chain because it senses one or more physical parameters, applies logic or intelligence, and produces an action to benefit the user1.

Integrated analog ICs can help optimize signal chain designs. Amplifiers, interface ICs, data converters, and voltage references are among the wide selection of high-performance, low-power analog ICs that Maxim provides for automotive signal chain applications.

Summary
The road to safer, smarter cars is paved with highly integrated, innovative and reliable ICs. From PMICs to LED drivers, high-speed serial links, RF and wireless ICs, and high-performance analog ICs, an array of circuitry is enabling a variety of vehicle subsystems. With these technologies, automotive designers are enhancing today’s and tomorrow’s vehicles with sophisticated ADAS, infotainment, and other autonomous functions.

For Additional Information
Learn more about Maxim’s automotive technologies, including solutions for infotainment, ADAS, body electronics, power and lighting, and EV powertrain.

Sources

1 https://www.maximintegrated.com/en/app-notes/index.mvp/id/4490 

meeting-next-generation-automotive-design-challenges

Display portlet menu

meeting-next-generation-automotive-design-challenges

Display portlet menu
Related Articles
Smart car branded with Avnet and supplier logos
ADAS: paving the way for autonomous vehicles
November 11, 2019
In order to realize fully automated driving without human intervention, three conditions must be met - the vehicle must be fully aware of the surrounding environment, be able to respond accordingly when the environment changes, and the security of th
road view from inside self-driving smart car
Unreliable autonomous driving? Take a look at how difficult vehicle-mounted vision processing is
November 11, 2019
We all have high expectations for autonomous driving, a fact that’s exemplified by the display of autonomous driving technologies at every major tech expo. Development in this sector has however been accompanied by an increase in accidents related
test car colliding with object
Transportation Safety: 5 Protocols & Processes to Know
May 29, 2019
A dynamic range of protocols can help make our transportation technology safer.
cargo ship at port
Transportation Trends in Commercial & Non-Passenger Vehicles
May 29, 2019
Some of the most exciting technology trends shaping transportation are for commercial vehicles.
Graphic of 5G uses for automotive
5G is here – and maybe it’s time to buy a new car!
May 27, 2019
The mission of 5G is to create the ‘Internet of Everything’, drastically expanding the scale of the Internet in the process. As one of our most valuable possessions, it is inevitable that cars will join the network.
smartphone showing alarm feature
Key Design Considerations for Selecting the Right RF Antenna
March 16, 2018
Know when to choose standard, when to go custom.
Person using the navigation systemm on their car dashboard
Four tech trends that improve the driver experience
September 13, 2017
Learn about ways to integrate some the most innovative features into cars, including haptic-feedback touch screens, knob replacement, smart glass and driver-notification applications.
smart car on the road at sunset with IoT icons overlay
Mastering the road ahead
August 28, 2017
The market demand for Advanced Driver Assistant Systems (ADAS) has increased by leaps and bounds. In fact, the global automotive electronics market is forecast to grow robustly over the next few years. In particular, the market value of entertainment
side view of a sports car from the ground up
Powering the future—the hidden heroes of electric vehicle technologies
August 14, 2017
The automobile industry in Mainland China has developed at an unimaginably rapid pace in recent years and a general trend can be observed in car sales figures. A little more than twenty years ago, automobile production in Mainland China numbered only
man in dirverless car with hands off the wheel
The Growth and Increasing Sophistication of ADAS in the World
July 5, 2017
As electronics in our cars continue to become more sophisticated, ADAS (Advanced Driver Assistance Systems) are taking center stage. These systems make many of the aspects of driving easier, and---most importantly—safer.
self-driving car at intersection
Top 5 Tech Trends in Advanced Driver Assistance Systems
June 15, 2017
Advanced driver assistance systems (ADAS) promise to enhance vehicle safety by helping to simplify the driving process, reducing sources of driver distraction and inattention that often lead to accidents. With ADAS support, drivers and their passenge
rear view camera on car dash with image of child riding a toy
Top 5 Myths in Automotive Vision: Designing Embedded Vision Systems Is Easier Than You Think
June 11, 2017
Vision has always occupied a special place in information science and popular culture. One does not need to be an engineer to appreciate the vast bandwidth available in normal human vision. Most people understand that the common saying “a picture i
man drawing schetch of an electric car attached to a battery
Technologies and Components for Designing Electric Vehicles
April 29, 2017
Hybrid electric vehicles (HEVs) such as the Toyota Prius and the Chevy Volt and electric vehicles (EVs) such as the Nissan Leaf, BMW i3 and Tesla Model S are growing in popularity amid concern for global warming.
Man navigating an IoT car dashboard
The Internet of Things is Driving The Internet of Autos
April 24, 2017
In the early 1900s Henry Ford made the automobile affordable and accessible. But what he really did was offer people connection. Rural residents could connect with more urban areas to sell crops and buy supplies.
smart car dashboard
New TFT LCD Technology Shape Infotainment for Cars of the Future
April 15, 2017
Although the technology has been around since the 1990s, the use of thin-film-transistor liquid-crystal displays (TFT LCDs) is on the rise in automobiles.
person driving a semi
Getting Started in Automotive Smart Vision Design
March 27, 2017
Advances in embedded vision technology have heightened interest in applying smart vision solutions for automotive safety.
Graphic of a car's outline
Gesture Recognition, Proximity Sensors Drive Advances in Automotive Infotainment
March 17, 2017
Safety must remain paramount when designing interactive interfaces for automotive applications, including guarding against distracted driving.
Person using the navigation console in their car
Automotive Electronics: Top 5 Tech Trends of Tomorrow’s Smart Cars
March 3, 2017
In the United States alone, motor vehicles travel well over four trillion miles each year according to the U.S. Department of Transportation.*
WiFi router with man in the background using tablet
How wireless communication protocols make or break designs
March 3, 2017
The design process includes many critical decisions for engineers, such as which wireless communications protocol to use.

meeting-next-generation-automotive-design-challenges

Display portlet menu
Related Events

No related Events found