\A\VNET

Reach Further™

Configuring Xilinx SDSoC for
PetaLinux Based Platforms

Tools: 2019.1
Training Version: v3.1
Date: 26 November 2019

© 2019 Avnet. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Avnet is providing this design, code, or information “as is." By providing the design, code, or information as one possible implementation of this

feature, application, or standard, Avnet makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights
you may require for your implementation. Avnet expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to
any warranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction

Using the instructions contained herein, you shall learn how to install custom platforms as well as what an
output of SDSoC is using the provided example project. Using this base knowledge, you will be able to
better understand the needs of SDSoC while leveraging this platform for your own projects. There are
some places where we will accept some acceleration (use of Board Presets), however there is no reason
that you would be required to do such. For instance, if you were generating the SDSoC platform for a
custom board.

Designed by Avnet

MiniZed™ is a Zynq® 7Z007S single-core development board. With the advent of the latest cost-
optimized portfolio from Xilinx, this board targets entry-level Zynq developers with a low-cost prototyping
platform.

Ultra9e6 is the first 96boards development board with 64bit ARM and programmable logic. Using the Zynq
UltraScale+™ MPSoC XCZU3EG multi-core SoC with accelerators, this makes a perfect platform for
starting out with highly complex SDSoC applications. This board targets entry-level Zynq UltraScale+
developers with a low-cost 96boards compatible prototyping platform.

Page 2

UltraZed-EG SOM is a highly integrated System-on-Module (SOM) based on the powerful Xilinx
Zynq UltraScale+ MPSoC family of devices. Designed in a small form factor, the UltraZed-EG
SOM packages all the necessary functions such as system memory, Ethernet, USB, and configuration

memory needed for an embedded processing system. While this SOM shares the same family as the
Ultra96v1 and Ultra96v2, the Xilinx XCZU3EG-1SFVA625 device provides many optimizations and
breakout capabilities that are not available on the much smaller package contained in the Ultra96.

RJ45 B
Connector USB-JTAG
(15) \ < N B Module
N Yt 3 (U18) Boot Mode
. @ Switch
3 v (sW2)

PS and PL
User LEDS

12v
Power Connector
Switch (37)
(sws)

Page 3

UltraZed-EV is a Zynq UltraScale+ MPSoC multi-core SOM which is centered around the Xilinx
XCZUTEV. This high performance, full featured SOM mates with the Avnet UltraZed-EV carrier card,
which breaks out the FBVB900 package to connect to many transceivers (PS and PL), many video
standards, GigE, SATA 3.0, USB 2.0/3.0, PCle Gen 2 Root Complex, as well as a FMC-HPC allowing
access to the PCle Gen 3 core through the PL interfaces. Being the MPSoC is a 7EV, this means this
SOM also include the new H.264/H.265 video codec. This Video Codec Unit (VCU), can do simultaneous
4K2K encode and decode up to 60FPS! This board targets high performance-level Zynqg MPSoC
developers with a full featured media prototyping platform.

Please contact your local Avnet FAE for further details with any of these kits.

Page 4

Lab 1 Design Objectives

Lab 1 offers system developers an example of how to:
e Work through and become familiar with the SDSoC 2019.1 tool flow, from a designer’'s
perspective
o Demonstrate a Matrix Multiply Example output on one of the development kits listed using a pre-
built SDSoC platform
e Learn how to install custom SDSoC Platforms

In order to install a custom platform, you will first need to generate the platform. In this case, Xilinx and
Avnet has multiple resources available. The main reference you should use will be the Xilinx User Guide
1146. The SDSoC Environment Platform Development Guide v2019.1 document has all the proper
references to the details one would need to create their own platform. Avnet and Xilinx also both offer
trainings. Avnet has a training guide which steps the user through creation of a custom platform for the
MiniZed development board. This SpeedWay is called “A Practical Guide to Getting Started with Xilinx
SDSoC”. In the case of this specific release, we will not dive into creating the PetaLinux based SDSoC
design as the complexities of building with PetaLinux warrant a much more detailed guide and the goal of
this guide is familiarity with the tools and working with existing designs.

Example Design Requirements

Software
The software used to test this reference design is:

e Xilinx SDx / SDSoC 2019.1 (SDSoC License Required)
e Platform archive

e MiniZed, Ultra96v1, Ultra96v2, UltraZed-EG with Carrier, or UltraZed-EV Board Definition
for Vivado

Page 5

Hardware
The hardware setup used to test this reference design includes:

e Lenovo ThinkPad T420 Laptop
0 Intel® Core i5-2540M CPU - 2.60 GHz
0 4GB DDR3 Memory
0 SD card slot on PC or external USB-based SD card reader
e Avnet MiniZed (AES-MINIZED-7Z007-G)
o Or
e Avnet Ultra96vl (AES-ULTRA96-G)
= JTAG Pod (AES-ACC-U96-JTAG)
o Or
e Avnet Ultra96v2 (PN AES-ULTRA96-V2-G)
= JTAG Pod (AES-ACC-U96-JTAG)
o Or
e Avnet UltraZed-EG Starter Kit (AES-ZU3EG-1-SK-G)
o Or
e Avnet UltraZed-EG SOM with PCIECC (AES-ZU3EG-1-SOM-G and AES-ZU-PCIECC-G)
o Or
e Avnet UltraZed-EV Starter Kit (AES-ZU7EV-1-SK-G)

e 1-USB cable (Type A to Micro-USB Type B)

Page 6

Experiment Set Up
As there is greater support for Linux based build environments, this guide is being transitioned to Linux. It
is recommended that the user use a native Linux build environment. If this is not possible, it is strongly
suggested to use the Avnet VirtualBox Installation Guide to create an Ubuntu build environment. You
must have installed the Xilinx tools and properly licensed them. The Board Definition files should be
installed into both your SDx based Vivado installation.
e The installation guide is located on the Element 14 Zedboard Community site
().
e Instructions for installing board definitions are located on the Element 14 Zedboard Community
Site ().
NOTE the BDF install procedure is the same for all Avnet boards and tool versions from at least 2017.4+
including the most recent tool versions of Vivado

You will also need an unzip tool.

Experiment 1. Install the Pre-Built SDx Hardware Platform
(UZ3EG_IOCC, UZ3EG_PCIEC, UZ7EV_EVCC)

SDSoC comes pre-installed with many platforms that allow you to immediately use many Xilinx boards. The
listed development boards are not included. For this experiment, you will use pre-built hardware platforms
called <developmentBoardShortName> so that you can quickly begin using SDx.

Installation of an SDx hardware platform is a two-step process:

e Copy the hardware platform files to a repository. For our purposes today, we will use ~/platforms
as our repository location.

e Setup SDx to use a repository, pointed at the repository location

We'll start this experiment by creating a new project so that you can see the pre-installed platforms. Then
you will add the Avnet platforms.

Page 7

https://www.element14.com/community/docs/DOC-92696/l/virtualboxinstallationguide20183v112zip
https://www.element14.com/community/search.jspa?q=board+definition+files

Having completed the VirtualBox Install Guide steps, Launch the SDx IDE by double clicking the
SDx Desktop Icon

SDx

Xilinx SDx
2019.1

SDSoC requires a workspace. Due to Windows path length constraints. It is important that this path
be short. Please enter this specific path for consistency through these labs and then click Launch.

/home/training/SDx_workspace

Eclipse Launcher

Select a directory as workspace

Xilinx SDx uses the workspace directory to store its preferences and development artifacts.

Workspace: [home/training/SDX workspace = Browse...

[] Use this as the default and do not ask again

} Recent Wnrkspaces

Cancel Launch

Page 8

3. The SDx IDE will launch and validate your license. You should see the Welcome dashboard as
shown below.

SDX_workspace - Xilinx SDx

File Edit Navigate Search Project Run Xilinx window Help

[welcome 2

Xl LI NX-!- XIllnx SDXTM IDE Workbench

Create Application Project

Create a Xilinx® sDx™ Application project Go through tutorials

&

Read more on the Web

Create a Xilinx® SDx™ Library project

% Add Custom Platform

Add or remove platform repositories

& Import Project

Import an existing project

4. Begin by creating a new Xilinx SDx project
a. Select File > New = SDx Application Project... or click Create Application Project on
Welcome screen

SDX_workspace - Xilinx SDx

Window Help

SDx Application Project...
SDx PlatForm Pro

v, s A oen el Afa] aall: |“‘E'
Create Application Project

Create a Xilinx® sDx™ Application project

Page 9

5. For Project Name, enter UZEGIOCCMM, UZEGPCIECCMM or UZEVMM

b. NOTE: the location of the project

Create a New SDx Application Project

Enter a name for your SDx Application project.

Project name: | U96V200BMM|

[Use default location
6. Click Next >

Here you will see the list of pre-installed Hardware Platforms. These are all Zyng-based boards. Notice that
our platform is not in the list.

Platform
Choose a platform for your project

Q+

MName Board Vendor
E zcT02 zc 702 xilinx.com
E zcT06 zc 706 ilinx.com
E zeul02 zcul02 ilinx.com
E zeul(d zeulld ilinx.com
E zeul06 zcul06 ilinx.com
E zed zed ilinx.com

7. Open Nautilus file manager (or similar) and create the directory ~/platforms

8. Now unzip the ultra96v2_oob_2019p1_PetalLinux_SDSoC_Platform.tar.gz archive
into the folder at ~/platforms

When complete you should have a directory structure as shown below:

1t Home platforms ultra96v2_ocb

Name

F= ultra96v2_oob

Page 10

9. Inthe New SDx Application Project dialog, click on +

Platform

Choose a platform for yorg

Q+82L0

Mame Board Vendor
zc 702 zc 702 xilinx.com
zc 706 2706 xilinx.com
zeull2 zeul2 xilimx.com
zeul 4 zeul0d silinx.com
zcul06 zcul06 silinx.com
zed zed xilinx.com

10. In the next dialog, navigate to the ~/platforms folder.

4 ||| training || platforms

H Name
irch i ultra96v2_oob
zently Used

11. Click OK.

Notice that in the Choose Hardware Platform is updated with the custom platforms and noted with a
[custom] tag

Name Boart
{8} ultragsév2_oob [custom] av
zc702 zc70:
zc706 zc70¢
zcu102 zeul(
zcu104 zcult
zcu106 zeui(
zed zed

You have now installed one of Avnet’'s custom platforms. You can select other platforms and extract them
the same way!

Page 11

Experiment 2: Create the Matrix Multiply Project

1. Now, we can choose the platform you are targeting, here we choose the u96_avnet platform by
selecting ultra96v2_oob [custom] then click Next > to continue. You can also choose one of
the other Avnet platforms.

Platform -
Choose a platform For your project &
Q+8 10 1
Name Board Vendor Path
ultragév2_oob [custom] em.avnet.co /home/training/platforms/ultra96v2_oob/ultragsev
B zc702 zc702 xilinx.com | SXILINX_SDX/platforms/zc702/zc702.xpfFm
B zc706 zZc706 xilinx.com | SXILINX_SDX/platforms/zc706/zc706.xpfm
B zcut02 zcu102 xilinx.com | SXILINX_SDX/platforms/zcu102/zcu102.xpfm
B zcuto4 zcu104 xilinx.com | SXILINX_SDX/platforms/zcu104/zcu104.xpfm
B zcut06 zcul06 xilinx.com | SXILINX_SDX/platForms/zcu106/zcu106.xpfm
B zed zed xilinx.com | $XILINX_SDX/platforms/zed/zed.xpfm

| Cancel | Finish

Page 12

2. You can leave the defaults on the next screen where you need to choose the System
Configuration. Notice the System configuration and Domain selection verbiage. This is set when
we create a platform (see Appendix A: Quick Steps to Create PetaLinux Platform)

System Configuration

Provide the system configuration and software details for your project

System configuration: | PetaLinux -
Runtime: C/C++ -
Domain: PetaLinux 2019p1 -
CPU: cortex-a53

Operating System: linux

[sysroot path:

3. Click Next > to continue.

Page 13

4. Select the “SDx Examples...” button, and install the SDSoC examples, select OK when complete

1 Templates

Select a template to create your project.

Available Templates:
Find: [&
Empty Application

']
|
| SDx Examples... | | SDx Libraries... |
after downloading, examples will be available as templal n creating a new project.
ind: [<3 =
§ sDSoC Examples Repository i| Download |

Progress Information

6 Downloading SDSoC Examples Repository

5. Select the 05_mmult_array_partition example, as a matrix multiply is typically seen as the SDSoC
Hello World

Empty Application
¥ cpp
¥ Getting Started Examples
¥ CPU_To_FPGA Examples
01_mmult_sw
02_mmult_hw
03_mmult_pipeline
04 _mmult_zero_copy
Array Partitioning
Burst Read/Write
Custom Data Type
Direct Connection
DMA SG(scatter-Gather)

NKAA Cieanla

6. Click Finish to create a new application.

Page 14

Now the SDx Project Explorer will have the ULTRA96V200BMM from which we can generate SDSoC
projects.

s Bri-aivr0- @i
] 7 K usdvioosmm B

% SDx Application Project Settings

General

Optiens

Target: | H

= project.sdy

B Cenerate S0 card image

Hardware Functions

Mame Clock Frequency (MHz) Path

mimlt_array_partition 100,00 src/mmadt_accelcpp

== Assistant 12 T M P ESEY,
¥ ¥ U9evI008MM [SDS0c]
* o Debug |
mmale_array_partition
* % Release

mimult_array_partition [C/Cs+ = problems O comale (i)

eities [] 50x Log I3 | B SO Terminal FLFZ = m f Target Cannections B # e L

QopEFEosOENDO R

For the purposes of this experiment, we will use Matrix Multiply Example code.

The example code that you use here is not really relevant as we are interested in the outputs of SDSoC as

well as the platform itself. This should be seen as a black box where any accelerator (ex. video processing,
LTE engine, AES engine, etc) could be inserted.

SD IP

HPFM

Target Code is Black Box

This is one of the most powerful abilities of SDSoC! Since we are using a provided platform, simply imported
the example template straight from the platform folder.

Page 15

Instructions on how to create your own Sample Template is located in UG1146. If you need to import files,
the process is the same as with Xilinx SDK.

¥ £ U96V200BMM

* &l Includes

* = Debug

* = libs

* = Release

¥ = 5IC
» [¢ main.cpp
» [¢ mmult_accel.cpp
» [n mmult_accel.h

3 project.sdx

Three sources added in Project Explorer

Page 16

Experiment 3: Build the Matrix Multiply Project

1. As the files were imported for us through the example, we will NOT need to designate which
functions to accelerate. If you had the need to, you would expand the mmult_accel.cpp and right
click on the mmult_accel function. Select Toggle HW/SW

¥ [¢ mmult_accel.cpp Runtime:

21 mmult_accel.h System configuration;
e mmult_array partition(int*, int*, int*, i

Open
® [0 mmult_accel.h ol

Open Call Hierarchy

“{ project.sdx
Refactor

Declarations

References

Toggle Breakpoint

Vivado HLS

Advanced compiler settings

2. Note that the function is already listed under the Hardware Functions list

Mame Clock Frequency (MHz) Path
* mmult_array partition 100.00 src/mmult_accel.cpp

Page 17

3. Next, back in SDx Project Explorer right click the U96V1MMPL project name, click on Build
Project, remember, you can follow this same flow with any of the provided platforms

5 Project Explorer 2 B S ¥ 5

¥ = U96V20gH
New
* & Includg
Go Inkto
» = Debug olnie
* =libs Openin NewWindow

» = Releas Show in Local Terminal

¥ &= srcC
® (g main
¥ [£ mmu
=5 m | A
mport...
@ m -mp
Imporkt Sources...
® [A mmu
. Export...
% projech

H Prnj

Clean Project

Page 18

4. While this is building, notice the SDx project Settings. This is a great place to see the overview of
the settings that are going into building this project. From here you can see that we HAVE selected
the mmult_array_partition as a hardware accelerated function.

Project Explorer 11 T T 0 W UMVIOOoRMM B =D
¥ 5 UISVIO0BMM < SDx Application Project Settings Active build configuration: | Debug = | &

General Options

mmule_array_partition 100.00. srefmmult_sccelepp

= Assistank 1 S E % Gllran:

* FEFUaeVZO08MM [SD50c]

Problems | B Cormole B () Guidsnce T Properties [Sx Log B SOx Terminal = O 4 Target Connections I i =

We left the project as Debug and did not select Release. If we had selected Release, the tool would have
performed additional runtime optimizations, which would have increased our build time.

The above steps can be seen in more detail in UG1028 — SDSoC Intro Tutorial v2019.1 (now listed on
Xilinx GITHUB https://github.com/Xilinx/SDSoC-Tutorials).

While we wait for the build, let's explore. What is happening while this is building?
e The tool copies the Vivado project from the platform into your local build area
e The tool analyzes the provided C code, including pragmas, and builds an internal data motion
graph — what connects to what, how, etc. It will make decisions at this stage based on your
memory configuration, buffer sizes (if known), etc. to determine interfaces, data movers, etc.

e The C code moving to hardware is synthesized by HLS

e SDSoC updates the BD to incorporate the data motion infrastructure and the generated HLS
IPs

e The tool updates your C code to seamlessly call the accelerator instead of the C function (you
can see the results of this in the _sds directory in the project build area)

e Generate a bitstream

e Combine the bitstream into BOOT.BIN using the FSBL, BIF, etc. that you provide as part of the
platform

Page 19

https://github.com/Xilinx/SDSoC-Tutorials

5. Navigate to ~/SDx_workspace/<project Name>/src.
Notice the 3 source files there.
Note: Swap the project folder name for the one you chose to build.

1t Home SDX workspace U96V200BMM src

Mame

main.cpp
mmult_accel.cpp
mmult_accel.h

More notes regarding the files and the file structure
e main.cpp runs the functions
e mmult_accel.cpp has pragmas listed

e mmult_accel.h has pragmas listed and defines the data array size

Page 20

Experiment 4. Set Up Your SDCARD

While the project is building, you can also set up your SDCARD, if necessary. This is necessary for
Ultra96V2. Other platforms Avnet creates utilize a RAM disk for the performance gains. This is a
selection made during PetalLinux creation and can changed with a rebuild of the PetaLinux BSP.
Please note that this section MUST be completed on a Linux machine as you will be working with the
EXT4 file system.

We will be following a summarized set of instructions from the Xilinx Wiki, where you will create a 1GB
FAT32 (W95 version) BOOT partition, as well as a EXT4 Root File System Partition

1. After inserting your SDCARD into your Linux host, open a terminal

2.

Run sudo fdisk /dev/sd?
a. Replace the ? with the letter assigned to your SDCARD

From here, we will assign the main FAT32 partition by typing ‘n’ and then ‘p’ to make it primary,
for size type ‘+1G’

Now make it bootable by typing ‘a’

From here, assign the remaining space as the EXT4 partition by again typing ‘n’, then choosing
the defaults for the first and last sector

You should now see two partitions, similar to the below image from the WIKI article posted above

Command (m for help): p

)isk /dev/sdc: 14.9 GiB, 15931539456 bytes, 3111
Jnits: sectors of 1 * 512 = 512 bytes

sector size (logical/physical): 512 bytes / 512 bytes
[/0 size {minimum/optimal): 512 bytes / 512 bytes
Jisklabel type: dos

)isk identifier: 0x72c90224

Jevice Boot Start End Sectors Id Type
dev/sdcl * 2048 2099199 2097152 83 Linux
dev/sdc?2 2099200 31116287 29017088 83 Linux

Command (m for help): JJ

If you see a similar configuration as the above image, type ‘w’ to WRITE the partitions and exit

Now back at the terminal, you will need to format the two partitions. Run the below commands,
but again, replace the ? with the letter assigned to your SDCARD

b. mkfs.vfat -F 32 -n boot /dev/sd?1
c. mkfs.ext4 -L root /dev/sd?2

Note if the above has issues running, check that you have changed the ? to the letter assigned to
your SDCARD. You might also need to sudo the command

Page 21

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842385/How+to+format+SD+card+for+SD+boot

Experiment 5: Run the Design

1. Insert one USB cable into the Ultra96Vv2 USB JTAG/UART POD MicroUSB connector

2. Plug the other end into your PC

3. If this is the first time you have connected your JTAG, ensure you have it selected to auto-capture
into the VirtualBox

AL R LA Tl S T e

USBE Device Filters

Kilinx JTAG+Serial [0700]

GEMEIRD [0111]

Digilent USE Device [0300]

Silicon Labs CP2103 Dual USE to UART Bridge Controller [0100]
Silicon Labs CP2103 Dual USE to UART Bridge Controller [0100]

4. If your build is complete, use a file manager to copy the three below selected files from the
sd_card folder to your BOOT partition on the SDCARD. Note the location includes a
rootfs_tar.gz file, which is only necessary for operating systems that use a static filesystem.

If you are still building, skip this step and return later. This can be completed at any time prior to
booting the Ultra96V2 with this card

The files are located:
~/projects/SDx_workspace/<project Name>/Debug/sd_card

e US6 BMM Debug sd_card Q -
o 3 Fr—y—1%
i A 4 —
bl31.bin pmufw.elf README. rootfs.cpio
Exk
o i 7 " HE
rookfs. rootfs. rookfs. rookfs.ext3 rookfs. rookfs.ext4 rookfs. rookfs.jffs2
cpio.bz2 cpio.gz cpio.gz.u- ext3.bz2 extd.gz
boot
r . f \
rookfs. rookfs.tar. rootfs.kar. rootfs. system.bit system.dtb System.
manifest bz2 gz testdata. map.linux
v cha json
alBox_Share
I . & ¢
bcations 018 v v “’
u-boot.bin u-boot.elf vmlinux zyngmp_
fsbl.elf

Page 22

5. If you are using a static filesystem (Ultra96V2 for example) follow the following steps, otherwise
skip to the next step.

a. Within your LINUX environment, Open a terminal and cd to the root partition

training@training-VirtualBox:~$ cd /media/training/
boot/ root/
training@training-virtualBox:~$ cd /media/training/root/

training@training-VirtualBox:/media/training/root$ [J

b. From here extract the root file system from the generated rootfs.tar.gz
Note: replace the folder location to point to where you have located the rootfs. tar._gz file

i. sudo tar -xvf ~/SDX_workspace/<projectName>/Debug/sd_card/rootfs.tar.gz

:~$ cd /mediaftraining/root/
:/media/training/root$ sudo tar -xvf ~/projects/sDx_workspace/U96ViMM/Debug/sd_card/rootfs.tar.gz

c. To ensure all caches are flushed, type sync this command might take some time

. P =
.jetcfiproutez/group
.Jetc/iproute2/nl_protos
.Jetc/iproute2/bpf_pinning
.Jetc/gshadow

. jdev/
./proc/
.fmntf

training@training-vb: /media/training/root$ sync

d. Once this extraction and sync completes, change out of that folder in preparation for
removing the SDCARD from the Linux machine. cd ~

6. Once this is complete, eject the drive per your Linux operating system. In the case of the Ubuntu
install from the Avnet Virtual Machine Setup Guide, right click the thumbdrive icon and eject parent
drive

M sf VirtualBox Share

M oot Unmount

7. If you have not completed step 4 and come back to step 8, otherwise insert the SDCARD into the
SDCARD cage.

8. Turn on the power and you should observe a similar display, as shown below for Ultra96v2

/dev/ttyUSB1 115200-8-N-1

Page 23

9. From here, login with root as the username and root as the password

10. Now in order to access the executable (elf) file, we will need to mount the boot partition of the
SDCARD

a. cd /media
b. mkdir sdcard

c. mount /dev/mmcblkOpl ./sdcard/

NOTE different platforms use different SDCARD locations, for example, UltraZed-EV
would use the command
mount /dev/mmcblklpl ./sdcard

mmcblkO@pl /media
11. Now execute the file, we will change to the SDCARD folder and execute the program

a. cd sdcard/

b. ./<project Name>.elf

Testing 1824 iterations of 32x32 fluatlng pulnt mmult...
Average number of CPU cyclez »unning mmult in software: 1588895
Average number of CPU cycles running mmult in hardware: 58736
Speed up: 31.8369

TEST PASSED

rootPxilinx—ultra?6—reva—20818_3:/mediassdcardit |

12. You have successfully generated an SDSoC program utilizing the provided platform. You can now
CLOSE the SDx IDE.

Page 24

Appendix A: Quick Steps to Create PetaLinux Platform
(ultra96v2_oob, UZ3EG_IOCC, UZ3EG_PCIEC, UZ7EV_EVCC)

To create the platform you are using, you will need a set of files. The details of what files you will need
are listed in UG1146. A quick list is shown below.

* fsbl.elf

e u-boot.elf

e bl31.elf (mandatory for Zyng MPSoC, NOT Zyng-7000)
e pmufw.elf

e image.ub

e rootfs.tar.gz

e <developmentBoardShortName>.dsa

To generate these files, Avnet has scripted build flows and has started to include all proper SDSoC hooks
into BSP images. This means, from your standpoint — using a Designed by Avnet development kit or
product can save you time and effort as we have already created the proper infrastructure for you to work
with the hardware. This also means you can concentrate on any system specific changes you might
need instead of the entire architecture!

General Instruction:

As you have already setup the VirtualBox installation (see Lab 1 “Experiment Set Up”), run the
below commands from a terminal window and you will pull down all the necessary source files
for a build.

$cd~

$ mkdir projects

$ cd ~/projects

$ git clone https://github.com/Avnet/bdf.qgit

$ git clone https://github.com/Avnet/hdl.git

$ git clone https://github.com/Avnet/petalinux.git

$ cd hdl ; git checkout uz_petalinux_20191126_171905 ; cd ..

$ cd petalinux ; git checkout uz_petalinux_20191126_171905 ; cd scripts

The Avnet scripted build flow is smart enough to be able to detect if the hardware image has been built
and as long as the hdl repository is at the same hierarchical level as the petalinux repository, running
ONLY the script to generate the PetaLinux BSP is enough to create the entire BSP, including hardware
image.

Page 25

From here, execute one of the SDSoC enabled BSP generation scripts.

Board Script to execute

Ultra96Vv2 make_ultra96v2_oob_bsp.sh
UltraZed-EG PCIECC make uz_petalinux_bsp.sh*
UltraZed-EG IOCC make uz_petalinux_bsp.sh*
UltraZed-EV CC make uz_petalinux_bsp.sh*

*NOTE the UltraZed family uses a combined build script. To ensure you build ONLY the target(s) you
want, you will need to modify both make_uz_petalinux.tcl as well as make_uz_petalinux_bsp.sh scripts.

Script Location Modification

make uz_petalinux.tcl hdl/Scripts Comment OUT the platforms you are NOT building

make_uz_petalinux_bsp.sh | Petalinux/scripts | Change the “Platform build images" variables you
do NOT want to build from yes to no

$./make_<boardProjectName>_bsp.sh

Once the execution is complete, we will need to generate a BIF file. An example is included in
UG1146

From the same terminal where the make script was executed, run the below commands

Zynq 7000:

$ cd ~/projects/petalinux

$ echo -e 'the_ROM_image:\n{\n [bootloader]<mz_avnet/boot/fsbl.elf>\n <bitstream> \n
<elf>\n}' > Jlinux.bif

Zynq MPSoC:

$ cd ~/projects/petalinux

$ echo -e ' the_ROM_image:\n{\n [fsbl_config] a53_x64\n [bootloader]
<ab3_linux/boot/zyngmp_fsbl.elf>\n [pmufw_image] <a53_linux/boot/pmufw.elf>\n
[destination_device=pl] <bitstream>\n [destination_cpu=a53-0, exception_level=el-3, trustzone]
<ab3_linux/boot/bl31.elf>\n [destination_cpu=a53-0, exception_level=el-2] <a53_linux/boot/u-
boot.elf>\n} > ./linux.bif

If SDSoC is NOT open, and having completed the VirtualBox Install Guide steps, Launch the SDx
IDE by double clicking the SDx Desktop Icon

SDx

Xilinx SDx
2019.1

Page 26

5. SDSoC requires a workspace. Please enter this specific path for consistency through these labs
and then click Launch.

/home/training/SDx_workspace

Eclipse Launcher

Select a directory as workspace

Xilinx SDx uses the workspace directory to store its preferences and development artifacts.

WY [ho me training/SDX_workspace 2 || Browse..

[T Use this as the default and do not ask again

» Recent Workspaces

Cancel Launch

6. The SDx IDE will launch and validate your license. You should see the Welcome dashboard as
shown below.

SDX_workspace - Xilinx SDx

File Edit MNavigate Search Project Run Xilinx Window Help

[welcome 2 o= 8 -

Xl LI NX- XIllnx SDXTM IDE Workbench

F Y

LT

Create a Xilinx® SDx™ Application project Go through tutorials

&

Create a Xilinx® SDx™ Platform project Read more on the Web

B Add Custom Platform

LT

Add or remove platform repositories

&

R Bro

Import an existing project

7. Begin by creating a new Xilinx SDx project

Page 27

8. Select File > New —> SDx Platform Project... or click Create Platform Project on
Welcome screen
SDX_workspace - Xilinx SDx

Shift+Alt+N

OpenFile...

9. For Project name, insert the Platform name from the list in the beginning of this section,
then click Next>

Here we are using the Ultra96V2 (ultra96v2_oob)

Create new platform project

Enter a name for your platform project

Project name: |ultrag6v2_oob]|

& Use default location

10. Select “Create from hardware specification (DSA/HDF)” and click Next>
11. Navigate to the location of the DSA file, as noted in the image
-~ |

[training | projects || hdl || Projects || ultragév2_oob | ULTRAS6V2_2019_1|

Name
1 & ultra96v2_oob.cache
tly Used i ultragsev2_oob.hw
19 & ultra96v2_oob.ip_user Files
op & ultrag6v2_oob.runs
stem il ultragsev2_oob.srcs

tualBox ... | BEIEGEZRTRIEE

12. Click OK to continue
13. SDx will process the DSA
14. Once complete, select Linux under the Operating System selector

Operating system: | standalone =

Processor:

Note: The genddll] have a single
modified late

15. Click Finish

Page 28

16. Once SDx has returned to the GUI, select the sysconfigl, and by clicking on the pencil
button (on the RIGHT), change the Display Name and Description. Use a similar scheme
as indicated in the image

€@ B *F XK System Configuration: sysconfigl

v E ultra9év2_cob

&= linux on psu_cortexa53

Display Name: |PetaLinux

Description: PetaLinux platform for Ultra96v2 2019.1 SDSoC
More Features / support built in, based off of PetaLinux OOB BSP

Readme: Browse.. || Q

17. Next, for the Boot Directorﬁyi,”é‘lrircil‘{ onBrowse
18. Navigate to the location of the Petalinux project, if using the recommended folder

scheme, your files will be located under
~/projects/petalinux/projects/ultra96v2_oob 2019 1/
images/linux

Select directory for 'Boot Directory

4 || [training || projects | petalinux | projects | ultra96v2_oob_2019_1 | images | linux |

5 Name a Sjz¢
arch
cently Used

19. I.:o.r the Bif File, select the location where we stored the linux.bif from step 3
/home/training/projects/linux.bif
20. Your sysconfigl tab should look similar to the below

System Configuration: sysconfigl

Display Name: |PetaLinux

Description: PetaLinux platform For Ultragév2 2019.1 SDSoC
More Features / support built in, based off of PetaLinux OOB BSP

Readme:

Generate software components
Choosing this option would generate boot artifacts, Fsbl, bif File etc.

@® Use pre-built software components

Boot Directory: |/home/training/projects/petalinux/projects/ultragév2_oob 2019 _1/images/linux

Bif File: Jhome/training/projects/linux.bif

21. Now open the “linux on psu_cortexa53” tab
22. Again, select the Pencil buttons and edit the Display Name and Description as indicated

Display Name: PetaLinux 2019p1

Description: PetaLinux System Configuration For Ultra96vz2
2019.1 5D50C

Page 29

23.

24.

25.
26.

27.
28.

29.

Now, click on the Orange “Click here” hyperlink

PetaLinux System Configuration f
2019.1 5D50C

1is not configured. Click here to update.

The next dialog should be filled in as we have already selected the Boot Directory and
BIF files. If these are NOT filled in, fill them in by pointing to the directory that contains
your boot files as well as the linux.bif that we generated in step 3

Select OK to accept and continue

New selections will appear

Description: PetaLinux System Configuration for Ultragev2
2019.1 5DSoC

Image:

Sysroot:

We will need to point to the Image only — meaning the rootfs.tar.gz file

As before, click the browse button, then navigate to the images/linux folder under the
Petalinux project, selecting OK to dismiss the folder selection dialog

Now we can select Generate Platform from the 1,2,3 steps at the bottom of the page
NOTE: we did not have to select steps 1,2 as they were already present in this version of
the tools — had we wanted to add new system configurations or processor selections,
we WOULD have to use steps 1,2

Image: /home/training/projects/petalinux/projects/ultra96v2_oob_2019_1/images/linux Browse...
Sysrook: Browse...
QEMU Data: Browse...
QEMU Arguments: Browse...
PMU QEMU Arguments: Browse...
Quick Links

1 Define System Configuration §2) Add Processor Group/Domain '3 Generate Platform

Page 30

30. Once complete, you can dismiss the dialog and you can locate an exportable copy of the
platform under the SDX_workspace folder
Generation completed

6 Platform generation has completed for 'ultragev2_oob'.

6vZz oob export ultra®6vZ oob

Name

= ultrasév2_oob

NOTE by default, SDSoC will include created platforms into the tool that is was generated on,
however once you lose the SDX_workspace folder, you will lose this platform and thus it is
suggested to move this platform to the ~/platforms folder or to a safe backup location. To keep
SDx from seeing TWO platforms, you can wipe the SDX_waorkspace folder or manually REMOVE
the extra platform by looking at the FOLDER that it has come from to determine the correct
platform to remove.

To remove a platform, under the Platform selection window, click the GEAR to bring up the
platform manager
Q+ (&

Name < Vendor Path

B zc702 2702 xilinx.com SXILINX_SDX/platForms,/zc702/zc702.xpFm
B zc706 | Zc706 xilinx.com SXILINX_SDX/platForms,/zc706/zc706.xpfm
B zcut02 zcu102 xilinx.com SXILINX_SDX/platForms,/zcu102/zcu102.xpfm
B zcu104 zcu104 xilinx.com SXILINX_SDX/platForms/zcu104/zcu104.xpfm
B zcu106 zcu106 xilinx.com SXILINX_SDX/platForms/zcu106/zcu106.xpfm
B zed zed xilinx.com SXILINX_SDX/platForms/zed/zed.xpfm

Select the platform of interest and click the — button to remove it.
Platform Repositories

Platform Repositories

(D Add or Remove Custom Platform Repositories.

f
+ -
{ Find: | €|
1 | Mame
% [& ultrasev2_oob /home/training/SDX_workspace/ultras6v2_oob/export/ultrasév2_oob
a

Page 31

Revision History

Date Version Revision
30 Nov 18 1p0 First public release
22 MAR 19 2p0 Updated to 2018.3 for U96V1 only
26 NOV 19 3pl Updated to 2019.1 for UltraZed Platforms with instructions for
Ultra96v2 when source files are released
02 DEC 19 3p2 Corrected Appendix GIT commands

Page 32

	Introduction
	Designed by Avnet
	MiniZed™ is a Zynq® 7Z007S single-core development board. With the advent of the latest cost-optimized portfolio from Xilinx, this board targets entry-level Zynq developers with a low-cost prototyping platform.
	Ultra96 is the first 96boards development board with 64bit ARM and programmable logic. Using the Zynq UltraScale+™ MPSoC XCZU3EG multi-core SoC with accelerators, this makes a perfect platform for starting out with highly complex SDSoC applications. ...
	UltraZed-EG SOM is a highly integrated System-on-Module (SOM) based on the powerful Xilinx
	Zynq UltraScale+ MPSoC family of devices. Designed in a small form factor, the UltraZed-EG
	SOM packages all the necessary functions such as system memory, Ethernet, USB, and configuration
	memory needed for an embedded processing system. While this SOM shares the same family as the Ultra96v1 and Ultra96v2, the Xilinx XCZU3EG-1SFVA625 device provides many optimizations and breakout capabilities that are not available on the much smaller...
	UltraZed-EV is a Zynq UltraScale+ MPSoC multi-core SOM which is centered around the Xilinx XCZU7EV. This high performance, full featured SOM mates with the Avnet UltraZed-EV carrier card, which breaks out the FBVB900 package to connect to many transce...

	Lab 1 Design Objectives
	Lab 1 offers system developers an example of how to:
	 Work through and become familiar with the SDSoC 2019.1 tool flow, from a designer’s perspective
	 Demonstrate a Matrix Multiply Example output on one of the development kits listed using a pre-built SDSoC platform

	Example Design Requirements
	Software
	Hardware

	Experiment Set Up
	Experiment 1: Install the Pre-Built SDx Hardware Platform
	Experiment 2: Create the Matrix Multiply Project
	Experiment 3: Build the Matrix Multiply Project
	Experiment 4: Set Up Your SDCARD
	Experiment 5: Run the Design
	Appendix A: Quick Steps to Create PetaLinux Platform
	Revision History

