

Zynq-7000 All Programmable SoC

Target Markets

- Aerospace & Defense
- Automotive
- Industrial, Scientific, and Medical
- Wired Communications Infrastructure
- Wireless Infrastructure

Best-in-class Performance and Power

- 25% faster ARM Cortex-A9 than competing SoCs
- 66% faster FPGA logic than competing fabric
- 55% power advantage over competing solutions

Built with Security in Mind

- Integrated system offers high physical security
- Secure system boot ensures proper operation
- Aerospace-grade security features keep IP safe

BOM Cost Reduction

- Fewer external components reduce design complexity
- All programmable for adaptability and reuse
- 10 different devices for varying design needs

Industry Standard SoC

The Zynq®-7000 All Programmable SoC redefines the possibilities for embedded systems, giving system architects and software developers a flexible platform to launch their new solutions, while providing traditional ASIC and SoC users a fully programmable alternative. ARM® Cortex™-A9 processors, skillfully integrated with the industry's leading performance-per-watt 28nm programmable logic, achieve power and performance levels exceeding that of discrete processor and FPGA systems. The Zynq-7000 SoC is the industry's first all programmable SoC and market leader in its class. Available in dual-core (Zynq-7000 devices) and single-core (Zynq-7000S devices) Cortex-A9 configurations, the Zynq-7000 family boasts the best price to performance-per-watt, making it the best option for a wide range of embedded applications, including small cell base stations, multi-camera drivers assistance systems, machine vision for industrial automation, medical endoscopy, and 4K2K Ultra-HDTV.

Racing Highly Differentiated Applications to Market

Enabling these silicon capabilities is the most extensive library of industry-standard tools and IP, which leverages the ARM partner community and is bolstered by Xilinx's Vivado® Design Suite and Vivado High Level Synthesis (HLS) tool. Complete with Xilinx's SDSoC[™] development environment, the industry's first C/C++ full-system optimizing compiler, the software ecosystem enables design teams to go from concept to working implementation in the absolute minimum amount of time, allocating more resources to focus on system features. More time for optimization, algorithm development, and feature extensions ultimately creates highly differentiated products, from costeffective to feature-rich and high performance.

Designed for Longevity in the Field

Embedded systems built upon the all programmable foundation of the Zynq-7000 SoC are ensured functionality and relevance in long running applications. Field upgradability via software updates to the ARM processing system can fix errors or retool the system for new tasks. The ARM processing system is also responsible for the reconfiguration of the programmable logic. Changing market requirements no longer necessitate new designs and deployment. The Zynq-7000 is the most versatile and programmable SoC for embedded solutions.

The Zynq-7000 family comprises single and dual ARM Cortex-A9 equipped devices, providing processor scalability across the platform:

Zynq-7000S devices are the costoptimized entry point to the Zynq-7000 SoC platform. With a single-core ARM Cortex-A9 processor mated with 28nm Artix[®]-7 based programmable logic, Zynq-7000S devices are ideal for industrial IoT applications such as motor control and embedded vision. **Zynq-7000** devices are optimized for performance-per-watt and maximum design flexibility. Dual-core ARM Cortex-A9 processors are integrated with 7 series programmable logic (up to 6.6M logic cells of logic and 12.5Gb/s transceivers) to enable highly differentiated designs for a wide range of embedded applications.

FEATURES OVERVIEW

Dual- or Single-core ARM Cortex-A9 with CoreSight™ Technology Unmatched performance-per-watt	 ARM Cortex-A9 processor chosen for optimal performance-per- watt ratio in popular applications Single and double-precision floating point support Up to 1GHz operation
Largest and Highest-Performance Memory System Features the fastest memory controllers and largest on-chip memory in its class	 512KB L2 Cache 256KB On-Chip Memory fits an entire real-time operating system Integrated memory controllers support up to DDR3-1866
7 Series 28nm Programmable Logic HPL process for optimal performance-per-watt	 Artix[®]-7 FPGA fabric for low power and low cost Kintex[®]-7 FPGA fabric for best price/performance/watt
Integrated Memory Mapped Peripherals Leverage commonly used protocols	 2x USB 2.0 (OTG) w/DMA 2x Tri-mode Gigabit Ethernet w/DMA 2x SD/SDIO w/DMA 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 32b GPIO
All Programmable Power Management Multiple power optimization technologies across processing system and programmable logic	 Flexible, tunable power envelope for adjustable processor, interconnect, and memory speeds ARM low power modes Partial reconfiguration to reduce programmable logic requirement
AMBA Open Standard Interconnect Ports High bandwidth interconnect between processing system and programmable logic	 64-bit AXI ACP port for enhanced hardware acceleration and cache coherency for additional soft processors Up to 100Gb/s bandwidth between PS and PL
Massive Parallel Signal Processing Enables hardware acceleration including video processing and analytics	 Dedicated, full custom, low-power DSP slices Up to 2,020 DSP blocks delivering over 2,662 GMACs
Advanced Security, Safety & Reliability State of the art technology for hardware, secure system boot, and software execution	 Processor-first boot using on-chip-memory with secure ROM code Anti-Tamper (AT) technology can 'zeroize' the device if tampering is sensed Secure system boot with RSA-based authentication, AES-256 decryption, and SHA-256 data authentication Full ARM TrustZone[®] support

Software and Ecosystem Features Xilinx Offers Full, End-to-End, No-Charge Software and Tools Solutions	
Real-Time Operating Systems Comprehensive collection from open-source to best-in-class commercial operating systems	 Linux – For general-purpose computing. Available as source code on GitHub, within Xilinx PetaLinux, or as industry-standard Yocto recipes FreeRTOS – Ideal for simple, high-performance tasks Bare-Metal – Best for high-performance, low-level applications Android – For feature-rich, user-friendly graphical applications
Development Tools SoC-centric tools and familiar environments to develop software and hardware on both the processing system and programmable logic	 Xilinx Software Development Kit (XSDK) tools – Manage the full development and debug cycle for multiprocessor designs SDSoC development environment – Compiles C/C++ applications into an optimized, fully functional Zynq-7000 AP SoC system Vivado Design Suite – Implement hardware designs with RTL or High Level Synthesis
Reference Designs and IP Block Portfolio A solid foundation for value added custom designs	 Xilinx-verified reference designs included in hardware development kits Extensive Alliance partner reference designs available Expansive IP block catalog for accelerators and peripherals across most application spaces
Hardware Development Platforms Platforms ship fully equipped and ready for immediate system design	 ZedBoard - Low-cost evaluation boards ZC702 Evaluation Kit - Complete embedded processing platform ZC706 Evaluation Kit - Expands ZC702 with high-speed serial transceivers Zynq-7000 AP SoC Video Kit - Expands ZC702 to enable video applications development
Virtual Development Platforms Prototype designs without the hardware requirements	 Zynq-7000 AP SoC Virtual Platform by Cadence, for both processing system and programmable logic development QEMU complete emulation platform of the Zynq-7000 AP SoC for fast software development, architecture investigation, and design porting

Software and Ecosystem Features Xilinx Offers Full, End-to-End, No-Charge Software and Tools Solutions

Corporate Headquarters

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 USA Tel: 408-559-7778 www.xilinx.com

Europe

Xilinx Europe Bianconi Avenue Citywest Business Campus Saggart, County Dublin Ireland Tel: +353-1-464-0311 www.xilinx.com

Japan

Xilinx K.K. Art Village Osaki Central Tower 4F 1-2-2 Osaki, Shinagawa-ku Tokyo 141-0032 Japan Tel: +81-3-6744-7777 japan.xilinx.com

Asia Pacific Pte. Ltd.

Xilinx, Asia Pacific 5 Changi Business Park Singapore 486040 Tel: +65-6407-3000 www.xilinx.com

India

Xilinx India Technology Services Pvt. Ltd. Block A, B & C, 8th, 12th and 13th Floors, Meenakshi Tech Park, Survey No. 39, Gachibowli (V), Serilingampally (M), Hyderabad – 500 084 India Tel: +91-40-6721-4747 www.xilinx.com

Boards and Kits

Xilinx and its Alliance partners offer a broad array of evaluation kits that enable rapid development for highly differentiated embedded applications based on Zynq-7000 AP SoCs. This includes all the basic components of hardware, design tools, IP, and preverified reference designs. To learn more, visit: <u>Zynq-7000 AP SoC Boards and Kits</u>.

Xilinx Zynq-7000 All Programmable SoC ZC702 Evaluation Kit

Xilinx Zynq-7000 All Programmable SoC ZC706 Evaluation Kit

Avnet MicroZed[™] Evaluation Kit

Avnet MicroZed Embedded Vision Development Kit

<u>Avnet PicoZed™</u>

Avnet PicoZed SDR SOM Z7035/ AD9361 Development Kit

© Copyright 2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and are used under license. All other trademarks are the property of theirrespective owners. Printed in the U.S.A. PN 2460 WW012016