

Application Developer's Guide Please read the Important Notice and Warnings at the end of this document Revision 2.2

www.infineon.com/iMOTION 2014-02-06

IRMCx100_AppDevGuide

Application Developer’s Guide

iMOTION™ motor control IC with additional MCU

About this document

Scope and purpose

The IRMCx100 series motor control ICs are mixed signal devices optimized for permanent magnet motor control.

They combines the iMOTION™ motion control engine (MCE) with an additional 8 Bit microcontroller (MCU) to

improve application flexibility.

This Developer‘s Guide will begin with the process of initial testing with the target motor, continue with

modification of the MCE design for application specific requirements and conclude with the design of motor

control hardware for the final application. This guide assumes that the user is in possession of an iMOTION™
reference design kit and has already completed the activities in the Quick Start Guide. The user should also review

the “MCEDesigner User‘s Guide”. This guide will refer to MCEDesigner features and actions frequently.

Section 2 starts by describing in detail how to measure the parameters of the target motor, generate the correct

drive parameters, and begin spinning the motor. Next, this section gives instructions on how to tune the speed and
current control loops and optimize the motor start-up parameters. Section 2 concludes with motor drive

performance verification and testing methods using MCEDesigner.

Section 3 introduces the MCE processor in more detail and then gives instructions on how to modify the factory-
supplied MCE design, if desired. The section finishes with some sample program modifications.

Section 4 guides the user through design, testing and optimization of application specific hardware as it relates to
the IRMCx100 motor control IC.

Finally, Section 5 provides application guidance for the power factor correction (PFC) feature, which applies to

IRMCx143 and IRMCx188 only and is available on the IRMCS1043 and IRMCS1188 reference design kits. It describes
the topology, control loops, parameter tuning, and hardware design for PFC, with specific references to the design
kits.

An additional document, the “IRMCx100 Software Developer‘s Guide”, has instructions on hardware and software
requirements and the development process of the embedded 8051 code. The “Application and Software
Developer‘s Guides” are designed to take the user through the design process. The reference manual, also referred
to frequently in this document, has detailed information on many topics covered here, as well as full descriptions

of the 8051 and MCE hardware registers.

Intended audience

This software developer’s guide is intended for customers implementing an inverterized drive.

www.irf.com 1 UG 06/02/2014

User Guide #UG-10001 V2.2

IRMCx100 Application Developer’s Guide

Version 2.2

By International Rectifier’s iMotion Team

www.irf.com 2 UG 06/02/2014

Table of Contents

Page

1 Introduction ... 4

2 Target Motor on IR Reference Board 5

2.1 Measuring the Motor Parameters ... 5

2.1.1 Importing Drive Parameters into MCEDesigner 8
2.1.2 Advanced Parameter Measurement—Saturation Effects 9

2.2 Starting Motor Application-Specific Testing 9

2.2.1 MCEDesigner .. 9

2.2.2 Possible Hardware Modifications .. 13
2.2.3 Variable Scaling .. 14

2.2.4 Verifying Scalings .. 17

2.3 Optimizing Motor Starting and Running Parameters............. 19

2.3.1 Before Start-Up ... 19

2.3.2 Start-Up Tuning ... 19
2.3.3 Catch-Spin Starting ... 24

2.3.4 Control Loop Structure & Tuning ... 26
2.3.5 Braking the Motor .. 37

3 MCE Program Customization 40

3.1 The Motion Control Engine ... 40

3.2 IR Standard MCE Program .. 42

3.2.1 Block Diagram ... 42

3.2.2 Motor Speed control Loop MCE Program 42
3.2.3 Other Features of the Speed Loop MCE Program 44

3.2.4 Input and Output Registers of the Speed Loop 44

3.3 Simulink MCE Design Components 46

3.3.1 MCE Design Hierarchical Format .. 46
3.3.2 The MCE Library ... 47

3.3.3 Standard Simulink Library Components .. 49

3.4 New MCE Design—Start to Finish 50

3.4.1 Setting up Matlab/Simulink .. 51
3.4.2 Creating a Complete System Design .. 51
3.4.3 The MCE Compiler .. 56

3.4.4 Downloading to the Reference Board.. 60

3.5 Example Modifications ... 63

3.5.1 Torque Mode ... 63

3.5.2 Limiting the Speed Feedback Input Variance 64

4 Motor Application Hardware Design 66

4.1 Schematic Elements .. 66

www.irf.com 3 UG 06/02/2014

4.1.1 Component Selection .. 66

4.1.2 A/D Feedback Scaling ... 67
4.1.3 Gate Drive Signals .. 68

4.1.4 A/D Converter Offset Compensation ... 68
4.1.5 Overcurrent Protection .. 70

4.2 Layout Recommendations .. 70

4.2.1 Current Feedback Circuit with IRMCx100 70
4.2.2 Overcurrent Protection Layout .. 72

4.3 Testing and Optimization .. 72

4.3.1 Space Vector PWM and Leg Shunt Current Sampling 73
4.3.2 Space Vector PWM and Single Shunt Current Reconstruction 76
4.3.3 Inverter-Related Testing and MCEWizard100 Settings 78
4.3.4 Overcurrent Protection .. 86

5 PFC Application Development 87

5.1 PFC MCE Program .. 88

5.1.1 Current Loop ... 88
5.1.2 Voltage Loop ... 89
5.1.3 Feedforward .. 91

5.1.4 PFC State Machine ... 92
5.1.5 Input and Output Registers of the PFC ... 93

5.2 PFC Inductor Measurement ... 96

5.3 Using PFC on the IR Reference Board................................. 97

5.3.1 Using the Wizard to Create the Configuration Parameters 97

5.3.2 Overcurrent Protection Circuit ... 98
5.3.3 PFC Variable Scaling .. 98

5.3.4 Optimizing Starting and Running ... 99
5.3.5 Other PFC Features .. 101

5.3.6 Possible Hardware Modifications .. 101

5.4 PFC Hardware Design ... 104

5.4.1 Schematic Elements.. 104
5.4.2 EMI Filter ... 104
5.4.3 Layout Recommendations ... 104

5.5 PFC Starting and Optimizing .. 104

www.irf.com 4 UG 06/02/2014

1 Introduction

There are extensive application development activities which the IRMCx100 Series IC user can
perform before creating the actual application code for the 8051 processor. This Developer‘s
Guide will begin with the process of initial testing with the target motor, continue with modification
of the MCE design for application specific requirements and conclude with the design of motor
control hardware for the final application. This Guide assumes that the user is in possession of
an iMotion Reference Design Kit and has already completed the activities in the Quick Start
Guide. The user should also review the ―MCEDesigner User‘s Guide.‖ This Guide will refer to
MCEDesigner features and actions frequently.

Section 2 starts by describing in detail how to measure the parameters of the target motor,
generate the correct drive parameters, and begin spinning the motor. Next, this section gives
instructions on how to tune the speed and current control loops and optimize the motor start-up
parameters. Section 2 concludes with motor drive performance verification and testing methods
using MCEDesigner.

Section 3 introduces the MCE processor in more detail and then gives instructions on how to
modify the factory-supplied MCE design, if desired. The section finishes with some sample
program modifications.

Section 4 guides the user through design, testing and optimization of application specific
hardware as it relates to the IRMCx100 motor control IC.

Finally, Section 5 provides application guidance for the Power Factor Correction feature, which
applies to IRMCx143 and IRMCx188 only and is available on the IRMCS1043 and IRMCS1188
Reference Design Kits. It describes the topology, control loops, parameter tuning, and hardware
design for PFC, with specific references to the Design Kits.

An additional document, the IRMCx100 Software Developer‘s Guide, has instructions on
hardware and software requirements and the development process of the embedded 8051 code.
The Application and Software Developer‘s Guides are designed to take the user through the
design process. The Reference Manual, also referred to frequently in this document, has detailed
information on many topics covered here, as well as full descriptions of the 8051 and MCE
hardware registers.

www.irf.com 5 UG 06/02/2014

2 Target Motor on IR Reference Board

This section describes the process of setting up the developer‘s target motor for reliable operation
using the IR Reference Board. Section 2.1 gives detailed instructions on measuring the motor
characteristics and using MCEWizard100 to generate the correct drive parameters. The section
concludes by guiding the user through importing the drive parameters into MCEDesigner and
spinning the motor. Section 2.2 starts testing the target motor in application specific conditions by
creating profiles in MCEDesigner. Section 2.3 covers the starting and control algorithms
employed by the IRMCx100 IC. This section also covers the process of tuning the speed and
current control loops, optimizing starting parameters, and troubleshooting initial drive
characteristics.

Before running the motor, the designer should verify that the IR Reference Board is suited to the
target motor. Verify that the power rating, continuous current rating, current sensing range, and
over current protection level are appropriate to the target motor. You may not be able to safely
get full performance from the motor if the hardware does not have the correct ratings. Section
2.2.2 gives some simple modifications to the Reference Board that may address this issue.

2.1 Measuring the Motor Parameters

To efficiently and effectively run a motor, the IRMCx100 motor controller requires certain motor
specific parameters, in addition to a variety of hardware and application parameters which will be
covered later in this Guide. Each parameter within the control IC is scaled based on the
maximum speed, current, voltage, etc. (Specific information on parameter scaling can be found
in Secion 2.2.3.) The MCEWizard100 tool is supplied so the designer can enter motor, hardware
and application specific information in standard engineering units. When you start at the
Welcome Page of MCEWizard100, verify that all of the ―Custom Design Questions‖ are
unchecked. As the developer continues through this Guide, these boxes will be checked, giving
access to more input parameters. Default parameter values are specific to the motor(s) and
hardware of the Reference Design Kit, which is selected on the Welcome Page.

To begin configuring the target motor, its specifications need to be entered into the appropriate
sections of MCEWizard100. Often, some of these values can be found on the motor nameplate
(Figure 1) and/or the motor datasheet. However, datasheets are not always clear about the
motor specifications. The user should pay close attention to units and other variations such as
line-line vs. line-neutral measurements and peak-peak vs. rms values.

Note: The way datasheet motor characteristics are specified for -connected motors are
different than for Y-connected motors. The input values to MCEWizard100 are based on a Y-
connected motor. However, if the parameters are measured using the procedures that follow,
then the correct value will be found regardless of the motor connection.

Most motor characteristics can also be easily measured, except for three values. The rated
current, rated speed and maximum speed should be obtained from the motor manufacturer if they
are not available in the datasheet or nameplate. The maximum speed entered into
MCEWizard100 should be based on the application requirements and be less than or equal to the
manufacturer‘s stated maximum speed. The controller has overspeed protection, so that a fault
is generated if the motor speed exceeds the maximum speed.

There are two other values to input into MCEWizard100: switch-over speed and minimum running
speed. The minimum running speed is generally set to 5 – 10% of the rated motor speed for
initial testing though it may be changed for application specific requirements. The IRMCx100
controller requires a minimum motor speed to reliably perform closed-loop speed control. Set the

www.irf.com 6 UG 06/02/2014

switch-over speed to 5% of the rated speed, or 5% less than the minimum speed. If there are
start-up problems, increase it to 10% of the rated speed.

Figure 1—Motor Nameplate.

The remainder of the motor characteristics can be measured and calculated using an Ohmmeter,
LCR meter and oscilloscope:

1. Motor Stator Resistance—Attach the Ohmmeter to two phases of the motor and record the

resistance. Measure all three combinations of phases to check the balance of the phases
(they should all be nearly the same). Average the three resistance values and then divide by
two to get the single phase resistance of the motor.

2. Motor Ld & Lq Inductance—Attach the LCR meter to two phases of the motor, as shown in

Figure 2. Change the position of the rotor, seeking out the maximum and minimum value of
the inductance. (The rotor should be stationary and the inductance value stable to get a good
measurement.) Repeat for the other combinations of phases. Average the maximum values
from each phase combination and then divide by two to calculate the value of Lq. Repeat
this calculation with the minimum values to get the value of Ld.

Note: The inductance does not vary with the rotor position for all SPM motors. An interior
permanent magnet (IPM) motor has Lq > Ld, and can generally produce a larger torque per
Amp. In a surface permanent magnet (SPM) motor, Ld = Lq. In this case, enter the same
number for both.

Figure 2—Measuring the Q phase and D phase Inductances.

3. Motor Poles— Connect two phases of the motor to an oscilloscope. Turn the motor through
one revolution and record the back-emf waveform on the ‗scope. Count the total number of
positive and negative peaks, which should be an even number. Figure 3 shows an 8-pole
motor. (It can be difficult to get exactly one revolution without extra peaks. One trick is to
turn the motor through several revolutions and then divide by the number of revolutions.)

www.irf.com 7 UG 06/02/2014

Note that the motor will still spin if this parameter is not set correctly. However, the
mechanical speed of the motor will differ from the requested speed by a factor of [entered
poles] / [actual poles].

 Figure 3—Counting the Number of Poles. This Motor has 8 Poles.

4. Motor Back EMF Constant (Ke)—Again connect two phases of the motor to an oscilloscope.

Turn the motor at a constant rate and record the waveform as shown in Figure 4. (When the
motor is turning at a constant speed, the back EMF waveform‘s peaks will all have the same
magnitude.) To calculate the back EMF constant, begin by finding the rms voltage and the
frequency (in Hz) of the waveform, then perform the following calculation:

Ke = 1000 * ([rms Voltage] / 3)/ ([frequency] *120/poles)

The factor of 3 changes the voltage from line-line to line-neutral. The final units of Ke are
Vrms,line-neutral/kRPM. Generally, RPM refers to the mechanical frequency, while Hz refers
to the electrical frequency in motor terminology. For accuracy, repeat this measurement at
several speeds for each phase pair, and average the Ke calculated from each waveform.

Figure 4—Measuring the Back EMF.

Note: If the back EMF is not sinusoidal, calculate the rms voltage using a numerical method,
like the rms calculation built into most oscilloscopes.

5. Motor Torque Constant (Kt)—If this is not provided by the motor manufacturer, it can be
estimated from Ke. If Ld = Lq, indicating an SPM, then

Kt = (9 * Ke) / (100 * )

www.irf.com 8 UG 06/02/2014

where the units of Ke are Vrms,line-neutral/kRPM and the units of Kt are N-m/Arms. If Lq >
Ld (for an IPM), then the torque constant is current dependent. To estimate, increase the
value calculated above by 5%.

6. Motor Total Shaft Inertia—This parameter is application dependent. For example, a full
washer may have large load inertia while a pump has small load inertia. The inertia is used
to estimate the motor speed during the open-loop period of the start-up sequence. In
practice, this parameter does not need to be extremely accurate. During application testing,
this can be varied to optimize the start-up performance of the motor.

The IRMCx100 Series sensorless motor controller can tolerate +/-10% motor parameter error
without noticeable performance degradation. An increased parameter mismatch between the
motor and controller will result in a degradation of torque per Amp capability. The degree of
degradation is dependent on the operating conditions (speed, load) and motor characteristics
(motor parameters and saturation).

2.1.1 Importing Drive Parameters into MCEDesigner

By selecting the correct Reference Design in the Welcome page of MCEWizard100 the default
values for the rest of the inputs can be used to configure the controller; just check that the value
entered for the Nominal DC bus Voltage is correct. From the Verify & Save Page (Figure 5),
press ―Calculate‖ and if there are no errors, select ―Export to MCEDesigner File (.txt).‖ Save the
file with a name that refers to the motor. Start MCEDesigner, open an .irc file and click on the
―System‖ window. From the File menu, select ―Import Drive Parameters‖ and select the text file
you just created. Choose ―Update All‖ from the next window and press OK.

Figure 5—MCEWizard100 Verify & Save Page

Be sure that the motor is connected and the board is powered up, with the COM active. Double
click the ―Configure Motor‖ function to write the new drive parameters to the controller. Next,
double click the ―Start Motor‖ function. The motor should begin to turn! Verify that you can
accurately vary the motor speed using the ―Reference Speed‖ function. (Right-click and select
―Properties‖ to change the speed value; double-click to write the new value to the control IC.)

www.irf.com 9 UG 06/02/2014

Save the MCEDesigner .irc file with a descriptive name which refers to the target motor. The next
time the .irc file is opened, it will already have the drive parameters saved. Simply run the
―Configure Motor‖ function to write the values to the controller. For more information on importing
drive parameters, please see the MCEDesigner User‘s Guide.

2.1.2 Advanced Parameter Measurement—Saturation Effects

Many motors suffer from saturation effects, where the inductances (Ld & Lq) decrease with
increasing phase current. Check with the motor manufacturer for data about the saturation. To
measure the saturation, apply a DC voltage (Vdc) to two phases of the windings and measure the
current as a function of time. The instantaneous slope of the curve is equal to Vdc/L at the
corresponding current level. The developer may have to use the saturation inductance at the
rated current in order to get the maximum torque. Generally, Lq will exhibit a greater degree of
saturation than Ld. Figure 6 shows a sample saturation curve.

In
d

u
c
ta

n
c
e

 (
H

)

motor current (A)

Irated

Lq

Figure 6—Saturation of Motor Inductance

2.2 Starting Motor Application-Specific Testing

Section 2.2.1 describes the process of testing the target motor in the real target application using
MCEDesigner. Section 2.2.2 describes some minor modifications which can be done to the
reference hardware to make it more suitable for the target motor or application. Next, Section
2.2.3 gives a list of the important internal variables and the scaling factors to relate them to
physical, measurable quantities. Verifying parameter scaling is an important part of the
debugging process, particularly when modifying the hardware; this process is described in
Section 2.2.4.

2.2.1 MCEDesigner

The main tool used to test the motor with application-like profiles and timing is MCEDesigner. A
test profile should recreate the speeds, acceleration, and timing of the real application. After
tuning the drive parameters as described in Section 2.3, the motor should be tested with
simulated or real loads at this stage. Both the Quick Start Guide and the MCEDesigner User‘s
Guide have detailed instructions on creating and modifying functions.

Another MCEDesigner tool to become familiar with is the parameter Trace (Monitor) which is also
covered in the Quick Start Guide and the MCEDesigner User‘s Guide. The parameter trace
allows the designer to see the value of internal registers of the motor controller. Figure 7 shows
the Trace Setup window, where the trigger settings, data sources and output file can be defined.
The trace collects register values on a PWM synchronous basis with an option to down-sample to
extend the trace duration; the trace length is fixed at 256 samples for each channel, with a

www.irf.com 10 UG 06/02/2014

maximum down sampling of 255. The trigger options are Force Trigger, Trigger on Level,
Trigger on Fault, and Auto Repeat Level.

Some strategies for debugging motor control problem situations using the trace:

 Use the Motor Status Flags or SequencerState register to trigger the Trace to determine
at which stage the problem happened. This is particularly useful for start-up problems.
(The StatusFlags and SequencerState registers are defined below.)

 Use the ―Trigger on Fault‖ setting for unpredictable problems.

 To get an auto-repeating Force Trigger for monitoring a single value, use Auto Repeat
Level, triggering on the RotorAngle register.

Figure 7—Trace Setup Window

2.2.1.1 Motor Control Sequencer

The firmware of the IRMCx100 includes a built-in sequencer which takes care of all state handling
for starting, stopping and performing catch-spin starting. The sequencer automatically performs
all of the steps required for robust control and startup. The user only needs to write to register
MtrSeqCtrl—writing a value of ―2‖ will start the drive in FOC mode, while writing a value of ―4‖ will
stop the drive by turning all the inverter switches off.

www.irf.com 11 UG 06/02/2014

state_idle
sequencer_state=1

state_bs_chrg
sequencer_state=2

state_ofst_cal
sequencer_state=4

state_park1
sequencer_state=32

state_park2
sequencer_state=64

state_open_lp
sequencer_state=128

state_trans
sequencer_state=256

state_closed_lp
sequencer_state=512

state_spd_chk
sequencer_state=8

state_brake
sequencer_state=16

state_z_crs
sequencer_state=16

Reset

state_fault
sequencer_state=1024

action_stopped

state_stopped
sequencer_state=2

action_bs_chrg

action_ofst_cal

action_park1

action_park2

action_open_lp

action_trans

action_closed_lp

a
c
tio

n
_
fa

u
lt

action_spd_chk

action_park1

action_park1

action_brake

action_z_crs

a
c
ti
o

n
_
c
lo

s
e

d
_
lp

action_open_lp

state_vf
sequencer_state=16384

action_vf

action_idle

a
c
tio

n
_
b

ra
k
e

Figure 8—Sequencer State Diagram

Figure 8 above shows the detailed state diagram of the motor control sequencer. The details of
each state and the transitions are described in more detail in Section 2.3. As the sequencer
executes, its state can be read from the register SequencerState as defined below:

www.irf.com 12 UG 06/02/2014

SequencerState
Value

Motor Start-up Stage

1 idle state

2 bootstrap capacitor precharge

4 measure offset current

8 check speed (in catch-spin)

16 braking (in catch-spin)

32 first stage parking

64 second stage parking

128 open loop startup

256 transition from open to closed loop mode

512 closed loop mode

1024 fault pending

16384 open-loop v/f control

2.2.1.2 Motor Status Flags

There is a set of system status read registers, which are useful diagnostic registers for identifying
and debugging motor control problems. It provides the motor status, particularly which stages of
start-up the motor has completed. Table 1 gives the registers and the associated drive status.
Please see Reference Manual for details.

Registers Description

StartOk Startup has succeeded (cleared whenever drive
stops).

ClosedLoop Closed-loop mode is enabled.

ParkingDone Parking done; Parking stage has been
completed.

ParkingOne First stage (25% of the total park time) of Parking
has been accomplished.

StartFail Startup has failed.

TwoPhsStatus Two phase modulation is enabled.

Table 1—Motor Status read registers

2.2.1.3 Fault Flags & Fault Handling

The FaultFlags register specifies which fault condition has occurred. In MCEDesigner, the fault
status is displayed in the status bar at the bottom of the window. If the motor, for example, has a
fault, then the status light will be red. Moving the pointer over the red status light will bring up a
small text box which lists the faults. Table 2 gives the fault associated with each bit of FaultFlags.

www.irf.com 13 UG 06/02/2014

Bit Field Description

0 GateKill Motor gatekill fault

1 CritOVFault Critical overvoltage fault

2 OvFault DC bus overvoltage fault

3 LvFault DC bus undervoltage fault

4 OverSpdFlt Motor overspeed fault

5 ZeroSpdFlt Zero speed fault

6 PhsLossFlt Phase loss fault

7 StartFailFlt Start fail fault

8 MCEFlt The MCE has generated a fault condition

9 CsOverSpdFlt Catch Spin overspeed fault

10 MCEExeFlt MCE execution fault

11 PFCGateKill PFC gatekill fault (available for 143 only)

12 ADCompFlt A/D Compensation fault

13 – 15 Unused

Table 2—FaultFlags Bit Definitions

In the case of a fault condition occurring, the fault is latched into FaultFlags, the motor drive is
shut down and an interrupt to the 8051 is generated. To clear a fault condition, write ―1‖ to the
FaultClear register and then set it back to ―0‖. Except for Motor/PFC Gatekill and Critical Over
Voltage, any of these faults can be disabled using the DisableFaults register. In the case of a
disabled fault, the fault is still reported in FaultFlags and an interrupt is still generated. However,
the motor drive will continue and the fault bit in FaultFlags will clear when the fault condition
disappears, i.e. the fault is not latched.

2.2.2 Possible Hardware Modifications

All of the hardware modifications described below will require new configuration parameters. The
designer should return to MCEWizard100 and change the appropriate input values. In the factory
default setting, none of the ―Custom Design Questions‖ on the Welcome Page are checked,
which prevents modification of certain input values that do not need to be changed. For the
hardware changes described below, check the box next to ―I have modified the circuit board‖ to
access the appropriate values.

2.2.2.1 Current Feedback

In some cases, the inverter system may be suitable, but the current scaling is not optimal. The
current feedback scaling can easily be modified by changing the current feedback op-amp gain or
by changing the shunt resistor. These modifications are useful in situations where the A/D
saturation current (given in the MCEWizard100 Verify & Save page) is less than or much greater
than the maximum current required by the application.

Figure 9 below shows a sample current feedback amplification circuit. The node labeled ―IFB‖ is
connected to the inverter side of the shunt resistor. In this circuit, the op-amp gain is 11.8/6.11 =
1.93. To modify the op-amp gain, the designer should change resistors in pairs (R83 & R80; R81
& R82; R77 & R79) to preserve the correct circuit biasing at AREF (0.6V reference).

www.irf.com 14 UG 06/02/2014

Figure 9—Current Feedback Circuit

Note: The developer may not be able to change the shunt resistor independently of the IRAM
module, depending on the iMotion Reference Board in use.

In the MCEWizard100, enter the appropriate value into the Current Feedback Amplifier Gain and
Current Feedback Shunt fields to get the correct drive parameters.

2.2.3 Variable Scaling

This section gives formulas to convert internal MCE variables to real, physical values
corresponding to the motor operation and condition. Some variables in this section may be
unfamiliar to the designer; they are explained more fully in further sections of this guide. Many of
the parameter scalings are determined by values input into MCEWizard100. Determination of
correct variable scaling is an important step when verifying the correct operation of the hardware.

2.2.3.1 Speed Scaling

Normal Operating Mode
TargetSpeed, SpdRef and SpdFbk scale such that

Rotor Speed (RPM) = [TargetSpeed] / 16383 * Motor Max RPM

where
Motor Max RPM is an entry of MCEWizard100.

__

Rtr_Freq, the estimated unfiltered rotor electrical frequency, scales such that

Actual electrical frequency (Hz) = Rtr_Freq * FreqPwm * FreqScl / 2^20
where
FreqPwm is the Motor PWM Frequency entry of MCEWizard100
FreqScl is set by bit fields of MtrCtrlBits and MtrCtrlBits_S (see IRMCx100 Reference
Manual)

__

SpdScl is configured by MCEWizard100 as follows:

SpdScl = 60 * 2 / poles * FreqPwm * FreqScl / 2
10

 * 16383 / Motor Max RPM

where
Motor Max RPM an entry of MCEWizard100
FreqPwm is the Motor PWM Frequency entry of MCEWizard100
FreqScl is set by bit fields of MtrCtrlBits and MtrCtrlBits_S (see IRMCx100 Reference
Manual)

www.irf.com 15 UG 06/02/2014

In IR‘s released version of the MCE reference design, SpdScl is used to convert from the
Rtr_Freq scaling to the SpdFbk scaling.

__

V/Hz Diagnostic Mode
When the FOC block is configured for Volts/Hz diagnostic mode (Register MtrCtrlBits), then the
speed scaling of VFFreq, TargetSpeed and SpdRef is as follows:

Rotor Speed Setpoint (RPM) = [SpdRef] * 0.01552583 * 120 / poles

The SpdFbk is invalid in V/Hz diagnostic mode.
__

2.2.3.2 Torque Scaling

TrqRef is correctly evaluated in terms of current. However, for the purposes of torque estimation
or torque control, the register scales as:

Motor Torque (N-m) = Irated * Kt * TrqRef / 4095
where
Irated is the Motor Rated Current in Arms as entered into MCEWizard100
Kt is the Motor Torque Constant in N-m/Arms as entered into MCEWizard100

It should be noted that this method estimates the torque assuming that Kt is constant over the
speed and motor current range of operation.
__

2.2.3.3 Current Scaling

When the settings of MCEWizard100 are properly set, the scaling of registers IdRef_C, IqRef_C,
Di, Qi, TrqRef, IdRefExt, Id_Decoupler, StartLim, MotorLim, RegenLim are all the same:

Current (A) = Irated * 2 *[IdRef_C] / 4095
where
Irated is the Motor Rated Current in Arms as entered into MCEWizard100

This scaling is achieved by the IfbkScl register, one of the register values calculated in
MCEWizard100. The following diagram and equation show how the value of IfbkScl is
determined:

k

Ishunt

A/D &
Current

Reconstruct

3-phase to

2-phase

conversion

Cordic

Rotation
IfbkScl

2
13

IU Ia

Ib

IV
IW

Iq

Id
Rshunt

Figure 10—Current Feedback Signal Path

4095 = Irated * 2 * Rshunt * k * A/D * (3  2) * (cordic) * (IfbkScl / 2
10

)
Where:

Irated is the Motor Rated Current in Arms as entered into MCEWizard100
Rshunt is the Current Feedback Shunt resistor value in Ohms as entered into
MCEWizard100
k is the Current Feedback Amplifier Gain entry of MCEWizard100
A/D is the analog-to-digital converter scaling (3412 / Volt)

www.irf.com 16 UG 06/02/2014

3  2 is the 3 phase to 2 phase conversion gain (1.0)
cordic is a factor introduced by the hardware vector rotator (1.64676)

__

Intermediate Signals
IU,V,W—During each PWM cycle, two of the three phase currents are sampled in the shunt resistor
and digitized in the A/D converter. The current feedback offset (IfbOffset) is subtracted from the
raw A/D output. Finally, the third phase current is reconstructed using the relation U + V + W = 0.
The U, V and W phase currents correspond to IfbU, IfbV and IfbW, respectively. The scaling for
these currents can be found in the Verify & Save page of MCEWizard100 or can be calculated by:

Current (A) = [IfbV] / (Rshunt * k * A/D)

Where:
A/D is the analog-to-digital converter scaling (3412 / Volt)
Rshunt is the Current Feedback Shunt resistor value in Ohms as entered into
MCEWizard100
k is the Current Feedback Amplifier Gain entry of MCEWizard100

__

 Ia,b—These currents are a 2-phase representation of the real U, V, and W phase currents. The a

and b phase currents correspond to registers I_alpha and I_beta. Their scaling is the same as
that of the real phase currents:

Current (A) = [I_alpha] / (Rshunt * k * A/D * (3  2))
Where:

Rshunt is the Current Feedback Shunt resistor value in Ohms as entered into
MCEWizard100
k is the Current Feedback Amplifier Gain entry of MCEWizard100
A/D is the analog-to-digital converter scaling (3412 / Volt)
3  2 is the 3 phase to 2 phase conversion gain (1.0)

__

The IScl parameter specifies the current gain scaler for the flux estimator. MCEWizard100
calculates this parameter. Please do not tamper with this parameter without consulting the
iMotion design team.
__

2.2.3.4 Voltage Scaling

Input DC and AC Voltages

DcBusVolts and DcBusVoltsFilt have the same scaling, which is the DC bus Feedback Scaling
entry of MCEWizard100. (DcBusVoltsFilt has a 0.492 msec time constant.) This scaling is
hardware dependent. In IR‘s Reference Design Kits, the DC bus voltage signal is reduced
through a voltage divider, shown below. Then this voltage is supplied to AIN0 to go to the A/D
converter.

Figure 11—DC bus Feedback Circuit

www.irf.com 17 UG 06/02/2014

The DC bus voltage can be calculated as follows:

DC bus (V) = [DcBusVolts] / (A/D * r)
where
A/D is the analog-to-digital converter scaling (3412 / Volt)
r is the voltage divider ratio (4.87k / (2M + 4.87k) in the figure above)

CriticalOvThr, DcBusOvLevel, and DcBusLvLevel scale as follows:

Voltage Trip Level (V) = [CriticalOvThr]*16 / (A/D *r)
where
A/D is the analog-to-digital converter scaling (3412 / Volt)
r is the voltage divider ratio (4.87k / (2M + 4.87k) in the figure above)

__

2.2.3.5 Rotor Angle Scaling

RotorAngle gives the estimated rotor electrical angle from the Rotor Angle Estimator PLL which
scales as follows:

Electrical Angle (degrees) = RotorAngle * 90 / 1024
__

2.2.3.6 Parking Variables

ParkTm sets the duration of the parking stage of the start-up sequence. The parking time is
calculated as follows:

Parking time (s) = ParkTm / 64

ParkI is the DC current injected into the motor during the parking stage. It defines the current in
terms of the peak rated motor current. The actual parking current in a particular phase will also
depend on the parking angle. The W-phase motor current can be calculated by:

W-phase Parking Current (A) = Irated * 2 * ParkI / 2
10

 * cos(Parking Angle – 60°)

ParkAng and ParkAng1 specify the angles to be used in the parking stage of startup. During
parking, two parking angles are used which are defined relative to the motor U-phase. The drive
will first use ParkAng1 for 25% of the total parking duration); thereafter, the parking angle will
switch to ParkAng to complete the parking duration. These parameters scale such that

Parking Angle (degrees) = [ParkAng] * 90 / 64
__

2.2.4 Verifying Scalings

2.2.4.1 Verifying Current Scalings

When setting up a new system, it is important to verify that the current scaling is correct. There
are several ways to do this, two of which are described below:

1. VF Diagnostic
The VF Diagnostic is a useful function for verifying proper operation of the power stage
independently of the current feedback and angle estimation. In this function, the motor is
operated in a V/Hz mode, where the ratio of voltage applied to electrical frequency is a constant
determined by VFGain. This mode is particularly useful for driving an induction motor. The VF
Diagnostic only operates in one direction. To turn an induction motor in the opposite direction,
simply switch two of the motor phases.

www.irf.com 18 UG 06/02/2014

Using the TargetSpeed and VFGain parameters, run an induction motor with the desired current
level to be verified. Record the V and W phase currents using a current probe and by tracing in
MCEDesigner. Use the scaling value given by MCEWizard100 to verify that the traced current
matches the real current by comparing the magnitude of the sine waves.

The figures below show the induction motor currents of the V (yellow) and W (green) phases, as
recorded on an oscilloscope (1A/division scale) and the MCEDesigner trace. For the hardware in
this test, the current scaling for IfbV and IfbW is 219.83cts/Amp. From these figures, one can
verify that the current scaling is correct as follows:

The amplitude of the current recorded on the oscilloscope is 3A, peak.
3A * 219.83cts / A = 659.49cts
The amplitude of the current as recorded on the trace is about 675cts, which matches well with
the expected value.

Figure 12—Verifying Current Scalings

www.irf.com 19 UG 06/02/2014

2. Parking Diagnostic
The Parking Diagnostic function of MCEDesigner can also be used to verify the current scaling.
During the parking diagnostic, DC current is supplied to the motor windings. There are several
settings to the parking diagnostic including the parking angle and the parking current. For more
information on the parking diagnostic, see Section 2.3.2.2.

Similar to the above procedure, run the parking diagnostic, measure the phase currents on an
oscilloscope and trace the variables IfbV and IfbW in MCEDesigner. Verify IfbV and IfbW using
the measured value and the scaling factor given in the Verify & Save page of MCEWizard100.

2.2.4.2 Verifying DC Bus Scaling

To verify the DC bus scaling, read the register ―DCBusVoltsFilt‖ and then divide by the DC bus
Feedback Scaling, which is an entry of MCEWizard100. Compare this value with the DC bus
voltage measured using a multimeter or other instrument.

2.3 Optimizing Motor Starting and Running Parameters

This section includes descriptions of the start-up sequencing and control loops of the IRMCx100
Series ICs. Included with the descriptions are procedures and suggestions on how to tune and
optimize the control parameters for your application.

2.3.1 Before Start-Up

The MCEDesigner program contains a ―Start Motor‖ function which simply sets the motor
direction and speed and then starts the sequencer (see Figure 8) using MtrSeqCtrl. The
sequencer performs two important pre-startup actions: Offset Correction and Bootstrap Pre-
charge.

The Offset Calibration is the first pre-start activity. The sequencer performs the current feedback
Offset Calibration to compensate for offsets in the current feedback path including the A/D offset
and reference voltage offset. The calibration is achieved by averaging 4096 samples from the
current feedback circuit when the motor is not running. The Offset Calibration can be skipped by
setting the appropriate bit in register MtrCtrlBits_S bit 6.

The Bootstrap Pre-charge is performed just before parking. The bootstrap pre-charge turns on
the low-side IGBTs in sequence to charge the bootstrap capacitors of the gate drivers and can
help to prevent overcurrent trips. The pre-charge stage is configured using registers
GCChargePW, GCChargePD, and GCChargeT. Set GCChargeT to zero to skip the Bootstrap
Pre-Charge sequence. More information on this topic can be found in the IRMCx100 Reference
Manual.

2.3.2 Start-Up Tuning

2.3.2.1 Start-Up Sequence

Because the motor control relies on back EMF for position control, the MCE processor must go
through a special startup sequence to provide for robust starting. The startup control block inside
the Sensorless FOC block (see the Reference Manual) is used to assist drive startup with the
ability to sequence the controller dynamically to three unique operating states (Parking, Open-
loop or Closed-loop). These three states are illustrated in Figure 13 and described below.

www.irf.com 20 UG 06/02/2014

S
p

e
e
d

(3) Closed-Loop

(2) Open-Loop(1) Parking

10%

100%

Figure 13—Drive Control Modes

State 1: Parking

The initial rotor angle is identified by forcing DC current into the motor and hence forcing the
motor shaft to park at a known angle.

State 2: Open-loop angle estimation

Immediately after the Parking stage, the rotor angle is estimated with a simple motor-load
mechanical model. If the mismatch between the external load characteristics and the internal
motor-load model is exceedingly large, start-up performance will suffer. In this stage, the
motor current is controlled and only the rotor angle is estimated.

State 3: Closed-loop angle estimation

Motor speed increases during start-up, resulting in a build-up of the motor back EMF. Useful
information for rotor angle estimation can then be extracted from the motor back EMF voltage
(estimated by using the PWM modulation depth and DC bus voltage). The drive will enter
Closed-loop control mode as shown in Figure 13.

In addition to implementation of these three states, the startup control unit can also detect
successful drive startup and signal the main Motor control sequencer of a startup failure (via the
StartFail register).

2.3.2.2 Parking Parameters & Parking Diagnostic

There are several parking parameters which are used to optimize the parking state of the start
sequence. These parameters are described below. More detail about each register can be found
in the IRMCx100 Reference Manual.

ParkAng1 and ParkAng

These parameters specify the angles used in the parking stage of startup, which is defined
with respect to the motor U-phase. During parking, two parking angles are used. The drive
will first use ParkAng1 for 25% of the total parking duration; thereafter, the parking angle will
switch to ParkAng to complete the parking duration. Two parking angles are used in order to

guarantee that the rotor moves to the final park angle. If the rotor‘s initial position is 90
(electrically) away from the parking angle, then it will not experience any torque.
Scaling: 64 = 90 Degrees Range: 0 -255

ParkI

This parameter specifies the amount of dc current injection during the parking stage function of
the motor rated current entered into MCEWizard100.
Scaling: See Section 2.2.3.6. Range: 0 - 255

www.irf.com 21 UG 06/02/2014

ParkTm

This parameter specifies the total parking duration. The motor will park at ParkAng1 for 25%
of the ParkTm and at ParkAng for the remaining time. The maximum parking duration that can
be set directly using this register is four seconds, though this time can be extended using the
Parking Diagnostic function described below.
Scaling: 255 = 4 sec Range: 0 – 255

The Parking Diagnostic mode of the control IC can be used to optimize the parking phase of the
motor start sequence, entered by setting the appropriate bits of MtrCtrlBits. This mode drives the
first park angle for 25% of ParkTm, and then park at ParkAng indefinitely, until the drive is
stopped or the parking diagnostic disabled.

 The following example illustrates a procedure to use an extended park time. In the example,
parking time is extended to ten seconds by activating the Parking Diagnostic for ten seconds
(steps 1 – 4) and then resuming normal drive operation with zero parking time (steps 5 – 7).

1. DiagSelect field of MtrCtrlBits = 1 (enable Parking Diagnostic).
2. Start drive.
3. Delay ten seconds.
4. Stop drive.
5. DiagSelect field of MtrCtrlBits = 0 (disable Parking Diagnostic).
6. ParkTm = 0 (zero parking time since parking is already established).
7. Start drive.

2.3.2.3 Parking Optimization

Correct parking is particularly important in situations where large starting torque is required. The
parking stage allows the controller to match the starting current phase angle to the rotor electrical
angle, maximizing the torque.

Some parking situations to beware of (with suggestions):

 The rotor is still moving at the end of the parking time. Try increasing the parking time to
allow the rotor to settle down to the parking position.

 The rotor does not move to the proper angle during parking. Try increasing the parking
current to provide more parking torque. A fully loaded washing machine may exhibit this
behavior.

 The rotor oscillates around the parking position. Is the inertia or friction very small? Try
using a smaller parking current.

 Due to cogging torque, the rotor moves away from the parking position when the parking
current is removed. Experiment with parking angles to find one which is stable when the
motor windings are not energized. Be aware that the parking positions are electrical
angles; this means that there are poles/2 different mechanical parking positions for each
park angle.

 If the application inertia is low, and the motor friction is very small, then it can be very
difficult to park the rotor. In this situation, it may be more reliable to start without parking.
Set the ParkTm to zero and the open loop stage will begin without parking. This can
often be the case in a motor with large cogging torque.

 To soften the parking ―jolt,‖ reduce the current regulator bandwidth during parking, as
may be required in a mechanical system with a gearbox. This is also useful for reducing
the overshoot in situations where high parking toque is needed, resulting in less parking
oscillation.

2.3.2.4 Open-Loop angle estimation to Closing the Loop

During the open-loop stage, the motor electrical angle and speed are estimated using the load
inertia and the motor torque constant supplied to MCEWizard100. The open-loop estimated
acceleration rate per amp of starting current is set by the parameter KTorque.

www.irf.com 22 UG 06/02/2014

KTorque

This parameter specifies the motor mechanical model gain used in the Open-loop startup
stage. KTorque relates the torque applied by the motor to the drive acceleration. This gain
plays an important role in robust startup. At rated motor current, the scaling is given by:

 Acceleration Rate (Hz/sec) = KTorque * FreqPwm * FreqPwm / 2^29
 where FreqPwm is the inverter switching frequency in Hz.

For instance: At rated motor current, 10 KHz inverter PWM frequency and KTorque = 100, the
controller will estimate an 18.63 Hz/sec acceleration rate during the open-loop stage. At 50%
rated motor Amps, the acceleration will be 50% of this value.

Once the controller estimates that the motor has reached the threshold speed (internal
parameter WeThr) then the angle estimator PLL is started. It is important that the actual speed
be large enough for the PLL to get good angle estimation (typically 5-10% of rated motor
speed).

WeThr

This parameter specifies the transition level (frequency) from Open-loop to Closed-loop mode
operation. The scaling of WeThr is related to internal frequency scaling of the drive by:

WeThr = SwFreq * 2^20 / FreqScl / FreqPwm

where:
SwFreq is the desired switch over frequency in Hz (typically 5 to 10% rated motor electrical
frequency), called ―Freq Switch-Over to Closed-loop Control‖ in MCEWizard100;
FreqPwm is the inverter pwm frequency in Hz; and
FreqScl is the frequency scaler, determined by bit fields of the MtrCtrlBits_S and
MtrCtrlBits registers, respectively. (See the IRMCx100 Reference Manual for more
information.)

In the case of KTorque and WeThr it is most convenient to set them using MCEWizard100 by
setting the Load Inertia and Threshold Frequency, respectively.

2.3.2.5 Troubleshooting the Closing of the Loop

The most important factor in successfully transferring from open-loop to closed-loop control is the
motor speed. The motor must generate a large enough back EMF for the angle estimator PLL to
lock onto the rotor angle. There are several ways to ensure that the motor reaches this speed
before the controller closes the loop.

 Reduce KTorque (by increasing the Total Shaft Inertia in MCEWizard100): With a lower
value of KTorque, the controller will estimate a longer time for the motor to reach the
threshold frequency, and the drive frequency will increase at a slower rate during the
open-loop stage.

 Increase WeThr (by increasing the Switch-over Freq in MCEWizard100): This will also
increase the duration of the open-loop period, but the drive acceleration rate will not
change.

 Modify the TargetSpeed: When the loop is closed, the controller will rapidly accelerate
the motor to the TargetSpeed. This can be undesirable, so set the TargetSpeed close to
the threshold speed. Increase TargetSpeed to the desired value after the loop is closed,
and use the speed ramp rate to control the acceleration. More information about the
speed ramp can be found in Section 3.2.

www.irf.com 23 UG 06/02/2014

 Low Voltage Fault: If the DC bus supply is not capable of supplying the start-up current,
then a Low Voltage Fault may occur. If this is the case, try reducing the Start Limit in
MCEWizard100, if the low speed load is small.

The selection of threshold frequency can be evaluated by running the motor at a constant speed
and then checking how well the speed feedback matches the actual speed. Gradually reduce the
motor speed until the speed feedback becomes inaccurate or noisy. Place the threshold
frequency at a value which gives good speed feedback.

Another problem can occur during the switch-over due to the time required for the PLL to
stabilize. Start the motor and trace the speed feedback (SpdFbk variable) during the start-up.
The speed will rise smoothly in a parabolic curve during the open-loop stage, and then it may
spike or dip before stabilizing at the running speed due to the PLL stabilizing, as shown in Figure
14. In most application situations, the PLL oscillations do not cause any starting problems. In
Section 3.5.2 an example of modifying the MCE program to dampen this spike is given.

Figure 14—SpdFbk (green) when the Loop is Closed at the Blue Vertical Line

2.3.2.6 Start Fail

The control IC can detect a start failure in the motor. The developer must enable the detection of
this fault mode, if desired, by clearing the correct bit in register DisableFaults (or selecting the
desired option in MCEWizard100).

Start Fail—A start failure is detected by sampling the motor flux at a certain time after the
controller enters Closed-loop mode (set by FlxChkT register). This error mode appears as a bit
flag in both the FaultFlags and StatusFlags register. The successful-startup flux range is set by
the registers FlxThrH and FlxThrL. More information about these registers can be found in the
IRMCx100 Reference Manual.

2.3.2.7 Zero Speed Detection

The control IC can detect zero speed errors in the motor. The developer can disable the
detection of this fault mode using DisableFaults (or MCEWizard100).

www.irf.com 24 UG 06/02/2014

Zero Speed Fault—This fault appears as a bit flag of the FaultFlags register. The Zero Speed
Fault is asserted when the motor speed falls below half the minimum speed (MinSpd) for two
seconds. This allows the controller to detect problems, such as a locked rotor. In MCEDesigner,
a Zero Speed Fault will shut down the drive.

2.3.2.8 Phase Loss Fault

The control IC can detect a motor phase loss. This fault can be enabled or disabled as desired
using register DisableFaults (or MCEWizard100).

Phase Loss Fault—If one of the motor phases is disconnected, or the motor windings are shorted
together, the parking currents will not have the correct value. When the Phase Loss Fault is
enabled, the controller detects this condition and turns on the appropriate bit flag of the
FaultFlags register.

Phase loss detection is carried out at the end of each parking stage. The registers AdjPark1 and
AdjPark2 have to be configured properly with respect to the parking angles; the configuration is
correctly done by MCEWizard100. Sufficient parking time and current is also required for reliable
Phase Loss detection. See the Reference Manual for detailed information.

2.3.3 Catch-Spin Starting

―Catch-Spin Start‖ is a feature designed for situations where the motor may already be turning.
The catch-spin start is generally effective up to the rated speed of the motor. Catch-spin cannot

be done if the motor back EMF voltage is higher than the DC bus voltage; this usually occurs
when the motor is above rated speed. The catch-spin starting process is part of the sequencer

and executes at start-up if MtrCtrlBits_S[0] = 1. The catch-spin sequencing (in
Figure 15) is as follows:

In catch-spin, while forcing the motor currents to zero, the controller tracks the back EMF in order
to determine if the motor is turning, and if so, in which direction (yellow):

 If the motor is turning in the opposite direction than that desired, zero vector braking is
initiated (See Section 2.3.5.2.) to stop the motor (beige). After the motor has slowed
enough, the angle is detected (at a current zero crossing) and the controller goes to open
loop without parking. Or, if a zero crossing cannot be found before the CsZcTimeout, it is
interpreted as a non-rotating motor and a standard start sequence is initiated.

 If the motor is turning (fast enough) in the same direction as that desired, then the
controller starts in closed loop mode and then accelerates the motor to the desired speed
(green).

 If the motor is stopped (or turning very slowly) or has been braked from reverse, then a
normal startup sequence is initiated with parking, open-loop and closed-loop.

 If the motor is spinning too fast in either direction, then the controller generates a fault
(CsOverSpdFlt) and exits the catch-spin sequence. The forward and reverse threshold
speeds are set by registers CatchMaxSpeed and BrakeMaxSpeed respectively.

 Another way to enter reverse catch spin is from the closed-loop state by setting
MtrSeqCtrl = 8. As shown in Figure 8, the controller can go directly from closed-loop
state to the brake state of the catch spin sequence, avoiding the need to fully stop and
park the motor before changing direction.

 The no-parking reversal of the motor depends on using the braking currents to locate the
rotor angle, which corresponds to a value of 0 in registers ThetaStart. However, the
value of this register can be changed to tune the reliability of the reverse starting.

Catch-spin is an advanced feature, but various registers for catch spin can be configured using
MCEWizard100. A more detailed description of catch spin can be found in Section 3.3.1.5 of the
IRMCx100 Reference Manual.

www.irf.com 25 UG 06/02/2014

state_bs_chrg

Wait for CatchTm

(CatchTm=2
16

 no timeout)

MtrCtrlBits_s.0=1

FOC in closed

loop with idq=0

|fPM| > FluxThr_C

Yes

Yes

Speed check

based on flux

TargetDir ≠

Direction

Yes

|w|<BrakeMaxSpeed

Yes

Setup brake time to

ZeroVectTm and start braking

Zero Vector type set

in ZeroVoltBrake

t > ZeroVectTm

Yes

Load timer with CsZcTimeout

and start to monitor ia and ib

Apply Zero

Voltage Vector

regardless of

ZeroVoltBrake

t > 100ms

Start to monitor ia and ib

ia > -5 and ia < 6

and ib <0
t > CsZcTimeout

state_open_lp

fPM < FluxThr_C

Yes
No

Yes

No

|w|<CatchMaxSpeed
No

state_closed_lp
Yes

No

No

Yes

state_park1
No

Forward Catch

Spin

state_park1

Yes

state_park1

action_spd_chk
a

c
tio

n
_

c
lo

s
e

d
_

lp

action_park1

action_open_lp

state_ofst_cal

action_fault

action_bs_chrg

action_fault
state_fault

state_fault

a
c
tio

n
_

p
a

rk
1

action_brake

action_z_crs

action_park1

a
c
ti
o

n
_

fa
u

lt

Figure 15—Catch Spin Start Sequence

www.irf.com 26 UG 06/02/2014

2.3.4 Control Loop Structure & Tuning

There are three main control loops associated with IRMCx100 Series products. These control
loops are the current control loop, speed control loop and field-weakening control loop. The
following table summarizes the parameter dependence of each control loop.

Parameters Current

Controller
Speed

Controller
Field-Weakening

Controller

Motor Inductance X X

Motor Resistance X

Voltage constant (Ke) X

Torque constant (Kt) X

System Inertia X

The speed loop is the outer control loop, determining the torque required based on the error
between the reference speed and the speed feedback. The reference torque, which is really a (q-
channel) current reference, feeds the current loop. The outputs of the current loop are the (q-
channel and d-channel) voltage modulation commands, which are converted into the PWM gating
times for the three phases during each PWM cycle. The field weakening loop supplies a d-
channel current reference to the current loop.

2.3.4.1 Current Controller

The iMotion current controller utilizes field-oriented, synchronously rotating reference frame type
regulators. Field-orientation provides significant simplification to the control dynamics of the
current loop. There are two current regulators (one for the d-channel and one for the q-channel)
employed for current regulation. The q-channel (torque) control structure is identical to the d-
channel (flux). The current control dynamics of the d-channel is depicted in Figure 16. The motor

windings can be represented by a first order lag with a time constant  = L/R. This time constant
is a function of the motor inductance and equivalent resistance (R = cable + winding). For a
surface mounted permanent magnet motor, the d and q channel inductances are almost equal. In
the case of an interior permanent magnet (IPM) motor, the q-channel inductance is normally
higher than the d-channel inductance.

In the current control continuous time domain model, Figure 16, the forward gain A models the
conversion of the digital controller output to voltage (including inverter gain) and the feedback
gain B models the transformation of the current feedback (Amps) to internal digital counts via an
A/D converter. The calculation of the PI compensator gains (KIIreg, KpIreg_D) is done by using a
pole-zero cancellation technique as illustrated in Figure 17 where the current controller is
rearranged to give transfer function block C(s). Setting KpIreg_D/KIIreg of C(s) equal to the time

constant of the motor (), the controller zero will cancel the motor pole (pole-zero cancellation).

Therefore, the model of the controller dynamics can be further simplified as shown in Figure 18.

The equivalent transfer function of Figure 18 is a first order lag with time constant c. By selecting

an appropriate current regulator response (typically 0.5 to 1 msec, MCEWizard100 entry Current

Regulator Bandwidth = 1/c) for a particular application, the current regulator gains can be readily

obtained. It may be noticed that using the pole zero cancellation technique, the motor inductance
enters into proportional gain calculations and the resistance enters into integral gain calculations.

www.irf.com 27 UG 06/02/2014

+

-

1

s

KIIreg

+

+

KPIreg

A
1

R(1+s.t)

v i

B

Controller Motor

Current

command

Figure 16—Current Controller Dynamics

+

-
A

1

R(1+s.)

v i

B

Controller Motor

Current

command

s

sKI
Ireg

Ireg

KI

KP

Ireg 















1

Figure 17—Pole Zero Cancellation

+

-
A

1

R

v i

B

Controller Motor

Current

command

s

KI Ireg 1

1+s.c

Ireg
c

KIBA

R

..


Figure 18—Simplified Current Control Dynamics Due to Pole Zero Cancellation

Based on the pole-zero cancellation technique the controller gains in the continuous time domain
model are evaluated by:

BA

gBWCurrentL
Kp

q
lreg






Re

BA

gBWCurrentR
KIlreg






Re

where A and B are the voltage and current scaling.

In the digital controller implementation, the integrator is a digital accumulator and so the discrete
time domain model for the PI compensator must be used for the integrator. In this case the digital
integrator gain, KxIreg , includes a scaling factor for the compensator sampling time.

TKIKx Ireglreg 

T is the controller sampling time, which in this case is equal to the PWM period.

www.irf.com 28 UG 06/02/2014

The voltage scaling, A, must account for gains in the forward rotation and the space vector
modulator. The three phase inverter produces a peak line voltage equal to the dc bus voltage Vdc,
so at 100% modulation the rms phase voltage is Vdc/√2/√3. The modulator produces 100%
modulation for a digital input of 2355 while the forward rotation function has a gain of 1.646.
Therefore, the current loop voltage scaling A is given by this equation:

 

 
 Vrms

.2355

647.1
6












dcV

A

The current loop feedback scaling, B, is defined by the shunt resistor, the amplifier gain, the A/D
converter gain and the current feedback scaling register, IfbkScl, described in the IRMCx100
Reference Manual. However, MCEWizard100 calculates IfbkScl so that a count of 4095 is
equivalent to the motor rated rms current. Therefore, the current loop feedback scaling is simply
given by:

  1- Arms
4095

RATEDI
B 

The controller gains calculated for the current loop typically yield numbers that are less than one
and so the current loop PI regulators include post multiplication scaling on the Kp and Kx inputs
to increase the precision of the regulator gains. The multiplier on the Kp input is followed by a
shift of 14 bits while the regulator on the Kx input is shifted by 19 bits. Therefore, the control gains
calculated for this digital implementation are given by:

BA

gBWCurrentL
KpIreg

q






142.Re

BA

TgBWCurrentR
KxIreg






192.Re

The following gain calculation illustrates a drive application setup with MCEWizard100 entries:

DC bus Voltage: 300V
Calculated voltage gain A: 0.0857 V

Rated motor current: 2.10 A

Calculated feedback gain B: 1950 A
-1

A_B product: (A.B): 167.1 V.A
-1

PWM Switching Frequency: 10kHz
Calculated sampling time T: 10

-4
 s

Inductance Lq: 21mH
Inductance Ld: 21mH
Stator Resistance: 6.9 ohms/ph
Current Regulator Bandwidth: 1500 rad/sec

The current regulator gains are calculated as:

www.irf.com 29 UG 06/02/2014

3089
1.167

21500021.0 14




KpIreg

3089
1.167

21500021.0 14




KpIregD

3247
1.167

21015009.6 194







KxIreg

The current controller in the Sensorless FOC block module directly uses these gain values.

The sequencer provides a current loop diagnostic test function called ―Current Regulator
Diagnostic,‖ which is entered into by setting the appropriate bits of MtrCtrlBits. This test provides
the response of the current control loop and also the steady state accuracy. This diagnostic
repeatedly provides a step current command as would be performed during parking. The current
command level is set by the register ParkI.

Once the current regulator diagnostic is executed, the step current response can be observed
from the trace function or current probes on the W-phase. It is recommended to use a current
probe to observe the step current response. In this test, the rotor shaft should not move; if it
does, it should be immobilized. Figure 19 shows the step current response (using a current
probe) of the w-phase when the Current Reg diagnostic function is executed. In this figure, a 25%
rated current step is commanded. The step level can be controlled by parameter ParkI (inside the
Current Reg Diagnostic function). Figure 20 shows the expanded version of Figure 19. The
measured current loop response is critically damped with a 0.65 msec time constant (0 – 63% of
the final steady-state value), which is approximately equal to the anticipated current regulator
bandwidth response (1/1500 = 0.667msec).

0%

25%

Figure 19—Step Current Response

0.65 msec

Figure 20—Step Current Response (Expanded Time Scale)

www.irf.com 30 UG 06/02/2014

2.3.4.2 Speed Controller

After tuning the current controller, proceed to tuning the speed controller. The speed controller is
the most outer-loop controller in the cascaded speed drive system, so the inner loop must be
tuned first. Figure 21 shows the cascaded control dynamics of the speed control loop. In
practice, the inner current loop has a much higher control bandwidth than the speed controller;
therefore for speed control dynamic purposes, the inner current loop can be ignored as shown in
Figure 22. Parameter M (Figure 22) relates the command current digital counts to the actual
current in Amps. The motor mechanical dynamic is a first order function with mechanical time
constant equal to J/F (Inertia/Friction). The pole-zero cancellation technique (outlined in Section
2.3.4.1) can be used to simplify tuning of the speed controller proportional and integral gains
(KpSreg, KxSreg). In practice, information on mechanical friction (F) is difficult to obtain, therefore
it is not modeled here. In addition, a temperature dependent friction characteristic is present in
some applications. Therefore, manual speed tuning may be required to achieve optimal speed
response. Some applications cannot tolerate high speed regulator bandwidth due to mechanical
resonances present in the mechanical system.

KpSreg

1

S

KxSreg

+

+

Filter

-

+

-

+

A

-

+

KpIreg

1

S

KxIreg

+

+

1

R (1 + S T)

B

MotorController

V I

S

1

Speed

Estimator

Speed

Command

Speed

Regulator

SpdFiltBW

Current

Regulator

Kt

Load

F

1/J
1

S

Speed

+

-

-

J - Inertia

F - Friction

Kt - Torque constant

A, B, C - Conversion Gains

Figure 21—Cascaded Control Dynamical Model

KpSreg

1

S

KxSreg

+

+

Filter

-

+

-

+
Speed

Command

Speed

Regulator

SpdFiltBW

C

Kt

Load

F

1/J
1

S
Speed

-

-

+

J - Inertia

F - Friction

Kt - Torque constant

C, B - Conversion Gains

Motorcontroller

B

Figure 22—Simplified Speed Control Loop Dynamics

As mentioned earlier, information on mechanical parameters (e.g., Inertia) may be inaccurate,
causing MCEWizard100 to output less than optimal gains for the controller. Manual tuning of the
speed regulator can be used to optimize the speed performance. Figure 23 shows the speed
response (trace buffer speed feedback signal) of a high inertia fan under speed ramping. As can
be seen, the speed response shows oscillatory behavior due to non-optimized gain values.

www.irf.com 31 UG 06/02/2014

Ramp Speed response

2200

2400

2600

2800

3000

3200

3400

1 100 199 298 397 496 595 694 793 892 991

Time (0.55 sec/Div)

S
p

e
e

d
 (

D
ig

it
a

l
c

o
u

n
ts

)

Figure 23—Ramp Speed Response

There are many different approaches to tuning a PI regulator for various applications. The
following steps provide an example guide line of speed regulator tuning for fan applications.

1) Tuning of KpSreg. Run the drive at a convenient speed; say 30% of the rated rpm.
Perform a small step speed change (step size of 5 - 10% of rated speed) with KxSreg
set to zero. The step response can be achieved by setting a fast speed ramp in
MCEWizard100. Under such conditions, the first order speed response is expected as
shown in Figure 24. This figure shows the speed responses using three different
proportional gains (KpSreg = Kp1, Kp2, Kp3).

Step Speed Response

2400

2600

2800

3000

3200

3400

1 201 401 601 801 1001

Time (0.167 sec/Div)

S
p

e
e

d
 (

D
ig

it
a

l
C

o
u

n
t)

Kp1

Kp2

Kp 3

Increase

KpSreg

Figure 24—Step Speed Response under Different KpSreg Gains

Adjust KpSreg until the desired transient response (Speed regulator bandwidth) is obtained.
For this fan application with a high inertia to friction ratio, Kp3 is selected to yield
approximately 0.2 sec first order time constant.

www.irf.com 32 UG 06/02/2014

2) Tuning of KxSreg. After the desired proportional gain (KpSreg) is selected (Step 1),
resume the desired ramp rate and speed regulator integral gain (KxSreg). Under such
circumstance (with KpSreg = Kp3 and KxSreg = Kx1), issue a ramp speed command
over the same speed range as illustrated in Step 1. Figure 25 shows the ramp speed
responses under three different integral gains (Kx1, Kx2 and Kx3). The response with the
original integral gain (Kx1) exhibits oscillatory behavior. The integral gain is being
reduced (Kx2 and Kx3) just enough to remove speed oscillation. For this fan application,
the response obtained is acceptable with KxSreg = Kx3.

Ramp Speed Response

2400

2600

2800

3000

3200

3400

3600

1 100 199 298 397 496 595 694 793 892 991

Time (0.275 sec/Div)

S
p

e
e

d
 (

2
0

0
 D

ig
it

a
l

C
o

u
n

ts
/D

iv
)

Kx1

Kx2

Kx3

Reduce

KxSreg

Figure 25—Ramp Speed Response under Different KxSreg Gains

3) Figure 26 shows ramp speed response with non-optimized (KpSreg = Kp1, KxSreg =
Kx1) and optimized (KpSreg = Kp3, KxSreg = Kx3) speed regulator gains. A tighter
control response is exhibited due to the gain optimization.

4) It may be noticed that there is still slight overshoot on the optimized Ramp Speed
response (Figure 26). Most applications can tolerate a slight overshoot (<10%).

www.irf.com 33 UG 06/02/2014

Ramp Speed Reponse

2200

2400

2600

2800

3000

3200

3400

1 100 199 298 397 496 595 694 793 892 991

Time (0.55 sec/Div)

S
p

e
e

d
 (

1
0

0
 D

ig
it

a
l

C
o

u
n

ts
/D

iv
)

Optimized

Figure 26—Comparison of Optimized and Non-optimized Speed Response

Increasing KpSreg or reducing the speed ramp rate as shown in Figure 27 can further reduce
speed overshoot. It is recommended to keep overshoot to the minimal possible for
applications (e.g., washer spin mode), which require a Field-Weakening range of more than
1.5 (150% of the rated speed).

Speed Overshoot Reduction

2200

2400

2600

2800

3000

3200

1 201 401 601 801 1001

Time (0.275 sec/Div)

S
p

e
e

d
 (

1
0

0
 D

ig
it

a
l

C
o

u
n

ts
/D

iv
)

Increase

KpSreg

Reduce

Ramp

Figure 27—Speed Overshoot Reduction

2.3.4.3 Interior Permanent Magnet Motor Control

The motor torque developed by a permanent magnet motor is given by:

  qdqdq IILLIFluxM
2

P
Torque 

Cylindrical

Torque

Reluctance

Torque

www.irf.com 34 UG 06/02/2014

Where:

P number of rotor poles
Ld, Lq d and q-axis inductance (d axis aligns to rotor magnet)
Id, Iq d and q-axis current components.
FluxM Flux linkage of the permanent magnets

There are two torque components associated with the motor torque equation. The first
component (cylindrical torque) is due to interaction between the rotor magnet flux and the stator
q-axis current. The second component (reluctance torque) is due to the motor saliency (difference
in d and q inductance). This saliency term is negligible (Ld = Lq) in Surface Mounted Permanent
magnet (SPM) motors. In the case of an Interior Permanent Magnet Motor (IPM) where Lq is not
equal to Ld, the torque per ampere rating is boosted by the saliency torque term. In motoring
operation, a negative Id injection will contribute to the increase in reluctance torque.

Current Magnitude

Current

Angle

(Deg)

90
Rated Amps

(b)

d

q

Current

Angle

Iq'

id'
(a)

I

0

Current Magnitude

Current

Angle

(Deg)

90
Rated Amps

(c)

AngLim

0

Figure 28—Current Angle at Maximum Torque per Ampere

Figure 28a shows the current vector trajectory for optimal torque per ampere generation of an
IPM motor. As the current magnitude increases, the current angle advancement also increases,
which indicates an increase in negative d-axis current demand. The required current angle for
optimal torque per ampere generation is depicted in Figure 28b. In the iMotion control IC, this
optimal current characteristic is approximated by a linear fit as shown in Figure 28b. Two
parameters (AngDel and AngLim) are used to characterize the behavior of the optimal current
angle for generating maximum torque per ampere. Parameter AngDel fixes the slope of the line
and parameter AngLim limits the maximum allowable angle advancement. MCEWizard100
computes AngDel with two points (zero and rated current point). The implementation of this linear
approximation and the calculation of the commanded d-q current are shown in Figure 29.

www.irf.com 35 UG 06/02/2014

Id_Decoupler
AngDel

K

Vector

Rotator

0

IqRef_C

90 Deg

+

AngLim

-AngLim

+

To current

 regulator

 commands

TrqRef

Figure 29—Current Decoupler for Optimal Torque per Ampere Operation

2.3.4.4 Field-Weakening Controller

Field weakening is required to extend the motor operating point beyond the rated speed. The
back EMF (BEMF) of a motor increases with speed up to the dc bus voltage. A further increase
in the motor speed requires flux weakening to maintain the motor terminal voltage at its maximum
possible level as shown in Figure 30.

M
o

to
r

F
lu

x

Speed

M
o

to
r

V
o

lt
a

g
e

Inverter

voltage

Limit

Crossover

Speed

Figure 30—Field-Weakening Characteristics

Figure 31 shows a block representation of the Field-Weakening Controller. The output of the
controller (Fwk_Id) is the d-axis current component, which opposes the rotor magnet flux (Flux).
By injecting a negative d-axis current, the resultant flux can be reduced and hence the motor
voltage can be limited to stay within the ceiling voltage of the inverter output. The control loop
gain increases with motor frequency as shown in Figure 31. Inside the Field-Weakening
controller, gain modulation is used to decouple the variation of loop gain due to motor frequency.

-

+
Modulation

 level

Ld

Motor

Frequency

Flux

+
+

Voltage to

modulation

conversion

MotorController

Field-

Weakening

Controller

Fwk_Id
B

Figure 31—Field-Weakening Control Model

www.irf.com 36 UG 06/02/2014

Figure 32 shows the Field-weakening controller. As can be seen from this figure, when the
modulation exceeds a prescribed level, specified by FwkLvl, a negative d-axis current (Fwk_Id) is
commanded and reduces the main flux. The Field-Weakening controller acts as a modulation
index limiter. The gain modulation block serves to compensate the increase in loop gain due to
an increase in the motor frequency, as mentioned earlier.

-

+

FwkLvl

Fwk_Id

(to Inner-loop IdRefExt)

FwkKxMod

- FwkLim

Dv (Sensorless Foc

output)

Qv (Sensorless Foc

output)

 modulation

computation

Integrate

and

Output limit
Gain

Gain

Modulation
Speed

FwkKi

Figure 32—Field-Weakening Controller Block

With gain modulation incorporated, the control loop gain is decoupled from the motor frequency.
Figure 33 shows a simplified representation of the Field-weakening controller. The equivalent
transfer function of Figure 33 is a first order lag system. Parameter M in Figure 33 is a function of
motor inductance, nominal dc bus voltage and the motor crossover frequency (function of motor
Ke). MCEWizard100 sets the field-weakening controller gain (FwkKi) based on parameter M and
a prescribed field-weakening loop response (0.25 sec).

M

-

+

FwkKi

1

S

Modulation

 level

Figure 33—Simplified Field-Weakening Control Model

The response of the Field-weakening loop can be observed from the command d-axis current
(using the MCEDesigner trace function). Under light Field-weakening conditions (-10% rated
motor current on field-weakening controller output current), a step change (-2%) in the modulation
limit level (FwkLvl) is issued. When the modulation limit reduces, the Field-Weakening controller
increases the d-axis motor current (with negative sign) in order to reduce the motor flux and
satisfy the modulation limit (voltage limit). Figure 34 shows a step change in FwkLvl and the
response of the command d-axis current. The first order response is exemplified in Figure 34.
The tuning of the Field-Weakening controller is straightforward since it only involves one
controller gain. The response of the Field-Weakening controller should be high enough to catch
up with speed changes. In practice, most appliance applications do not require high dynamic
speed changes in the Field-Weakening region. Therefore the response of Field-weakening can
be relaxed (typically: 0.1 to 0.4 sec response time. The MCEWizard100 is preset to 0.25sec).

www.irf.com 37 UG 06/02/2014

Figure 34—Field-Weakening Control Responses

Vertical: Id command (digital counts) Horizontal: Time (0.1 sec/ div)

Some control hints for high speed operation:

 Reduce the speed loop gain.

 The maximum torque may not be available during field weakening.

 Also, try reducing the values of register MotorLim to increase the voltage available for
BEMF reduction.

 Reducing the FWLevel register will begin the field weakening earlier to provide more
voltage margin for control.

2.3.5 Braking the Motor

Naturally, in almost all applications, the motor will need to be stopped as well as started. The
simplest way to stop the motor is to simply stop the drive. The PWM switching will stop and the
motor terminals will no longer be energized. The rotor will coast down to a stop.

However, many applications will require a less passive and more effective braking method. One
such method is to park the motor (DC injection). This may be useful in situations where the motor
is moving slowly and needs to be started again immediately. This section describes two more
braking methods and then concludes by describing a fault condition which protects the hardware
by braking.

2.3.5.1 Regenerative Braking

The velocity controller is capable of applying a torque in either the same or opposite direction of
the motor motion. This reverse torque can be used to slow the rotor in a technique known as
Regenerative Braking.

In normal operation, a current is applied to the motor winding. During active braking, the phase of
the current is inverted, so that current is now removed from the motor windings. The rotor
experiences a torque, proportional to the current, opposite the direction of motion, and the DC
bus becomes charged from the motor current. Be careful of overcharging the DC bus during
active braking. Be sure to set the overvoltage fault level at a safe value. One way to dissipate
the energy is to use a brake resistor, which discharges the DC bus in an overvoltage situation.

Implementing active braking is relatively simple. Change the ―Regen Limit‖ input of
MCEWizard100 to a non-zero number and then set a low speed reference. The Regen Limit is
defined as a percentage of the rated current, so a larger Regen Limit will result in a higher
braking current and a higher reverse torque. The (negative of) Regen Limit acts as a lower limit

www.irf.com 38 UG 06/02/2014

to the Torque Reference output of the speed loop. The result is that the Torque Reference can
be inverted, indicating torque in the opposite direction of the motion and resulting in an inversion
of the motor current phase. The Torque Reference can become inverted if the Speed Feedback
is greater than the Speed Reference. The speed loop is covered in detail in Section 3.2.

2.3.5.2 Zero Vector Braking

In Zero Vector Braking, energy is removed from the mechanical system by the back EMF of the
rotor and is dissipated by the resistance of the motor windings. At an electrical frequency where
the winding impedance is dominated by the inductance, zero vector braking will produce a
constant current in the motor windings. When using this braking method, verify that the motor
can withstand the short circuit current.

There are two methods implemented in the IRMCx100 for this type of braking: Zero Voltage and
Zero Vector. In Zero Voltage Braking, the three motor terminals are shorted together by
alternately turning on all the low-side and then all high-side transistors of the motor drive inverter,
as shown in Figure 35 below.

Figure 35—Zero Voltage Braking

Note that the minimum pulse width and dead time are applied in this braking mode. The
advantage of this method is that the heating of the power switches is shared between the high-
side and low-side. Another advantage of Zero Voltage Braking is that the motor currents can still
be observed—do not change the minimum pulse width in this case. The disadvantage is that,
due to dead time and the minimum pulse width, the DC bus can be charged up if the motor
is spinning at field-weakening speeds. Set the minimum pulse width (TCntMin3Ph,
TCntMin2Ph) to zero to minimize this effect.

In Zero Vector, the low-side power switches are turned on continuously. Since there is no
deadtime necessary, there is no chance of charging the DC bus.

To request Zero Voltage Braking, write ‗1‘ to register Zero_Vec_Req. To brake using the Zero
Vector, trigger a Critical Overvoltage Fault (see Section 2.3.5.3) by writing a low value to register
CriticalOvLevel.

In a reverse Catch-Spin situation, the user may select the type of braking used by writing to the
register ZeroVoltBrake.

2.3.5.3 Critical Over Voltage Protection

In order to achieve high-speed operation under limited voltage capability, the motor flux is
suppressed by injection of a negative d-axis current (Field-weakening) to the motor. In case of an
inverter shunt down at high speeds, all inverter devices will be disabled and the negative d-axis
field forcing will be lost. Under such circumstances, the motor flux will resume and the motor
voltage will build up according to the motor Ke as shown in Figure 36. This is a critical over
voltage condition in which the motor BEMF builds up and charges the dc bus capacitor voltage to
an exceedingly large value.

www.irf.com 39 UG 06/02/2014

Inverter

shunt down

M
o

to
r

F
lu

x

Speed

M
o

to
r

V
o

lt
a

g
e

Inverter

voltage

Limit

Voltage

increase

Speed

Figure 36—Inverter Shunt Down during Field-Weakening

In the iMotion control IC (IRMCx100 series), the critical over voltage protection is implemented in
the MCE firmware. The critical over voltage condition is detected by comparing the dc bus voltage
feedback to a configurable voltage level. When a critical over voltage is detected a zero vector
(low side devices turn-on) PWM state is entered, independent of any condition (including faults).
The use of a zero vector forces short circuit to the motor terminal and hence prohibits charging of
dc bus capacitors. Figure 37 illustrates the critical over voltage condition and the engagement of
zero vector protection. Upon application of the zero vector, the motor current will circulate within
the motor windings and the rotational energy of the motor will be dissipated inside the motor
(copper and core losses). The inverter is held in the zero vector state until the Critical
Overvoltage Fault is cleared.

Critical dc bus

Over voltage

Motor

W-phase

Current

Hor: 10 msec/ Div

Inverter

Shut down Zero Vector

initiation

Nominal dc

bus voltage

Figure 37—Critical DC bus Over Voltage
(top: dc bus voltage, bottom: motor current)

www.irf.com 40 UG 06/02/2014

3 MCE Program Customization

This section will begin by describing the Motion Control Engine (MCE), which is the processor
where the main motor control loops and protection logic are implemented. The motor control
algorithm is realized through a combination of user configurable software elements (i.e., Speed
loop) and fixed firmware elements (Current loop) executed within the MCE on a PWM
synchronous basis. The software control sequence (MCE program) is available for modification
by the designer for application-specific functionality, using MATLAB/Simulink as a graphical
editing tool. Section 3.2 explains the factory-installed MCE program. The following section
explains the general properties of an MCE design created in MATLAB/Simulink. Section 3.4
gives instructions on how to configure the MATLAB software and modify, compile and download
the new MCE program. Section 3.5 concludes with two examples of MCE program modifications:
―Torque Mode‖ and ―Limiting the Speed Feedback Input Variance‖.

The MCE program development environment consists of the following components:

 A library of graphically-represented Simulink control blocks to be used in the design of a
motor control system.

 The MCE compiler, a web-based tool which analyzes the Simulink design and generates
a corresponding program file that is executed by the MCE processor on the IRMCx100
IC.

 MCEDesigner, which provides a graphical user interface to the IRCMx100 to allow
download of the MCE executable file, control of MCE operation, and analysis of system
function and performance.

The MCE development tools software distribution is organized beneath a main directory named
MCE Compiler, within the iMotion directory (normally found at C:\Program Files\iMotion\MCE
Compiler). The main MCE Compiler directory contains subdirectories ―Simulink Library100‖,
which contains the Simulink library block definitions; and ―Matlab100‖, which contains the
MATLAB scripts that implement the graphical blocks.

The MCE development tools are designed to operate with MATLAB version 7.4 and Simulink
version 6.6. They should operate properly with newer versions, but may not function correctly
with older versions of MATLAB and Simulink.

Note: MCEWizard100 may produce incorrect register values if the MCE program is changed.
The designer should carefully consider whether the MCEWizard100 output is still correct after
modification of the MCE program.

3.1 The Motion Control Engine

The Motion Control Engine carries out the main motor control computations within the IRMCx100
Series IC. Figure 38 is a block diagram of the MCE showing the main components and main
communication bus.

The primary component of the MCE is the MCE processor which runs the MCE firmware and
MATLAB design, including sequencing some hardware computations according to the MCE
program instructions.

The MCE firmware and MCE program are contained in a configurable block of RAM. The
program is loaded to the RAM during the boot process of the MCE. For more information about
the boot process, see the Reference Manual.

www.irf.com 41 UG 06/02/2014

In addition to the MCE program RAM, there is a shared (data) RAM which is accessible to the
8051 processor. The registers contained in this section of RAM are used by the 8051 processor
to control the settings and actions of the MCE. MCEDesigner sends instructions to the 8051
processor, which then starts, stops and changes the speed of the motor by writing to registers
within the shared RAM.

Designed to facilitate and speed the motor control computations, the MCE firmware is a set of
fixed software modules to do specific functions. Included in these modules are blocks which
regulate the current, produce the gate drive PWM signals for the motor drive and reconstruct the
motor phase currents from the single shunt current sampling. Also, over-current shut down
signals (GATEKILL) go directly to the MCE to get a fast shut down of the drive. Closely
integrated with the MCE is the Analog Signal Engine, which contains op-amps, sample-and-hold
circuitry, analog multiplexing and an A/D converter.

Figure 38—Block Diagram of the MCE

Motion Control
Processor

Dual Port
RAM

256 B - 1

MCE
Program

RAM
768 B - 3 kB

M o t i
o n
C o n t r
o l
B u s

A / D
MUX
S / H

Single shunt
current

reconstruct

PFC
PWM

Motion
Control
Modules

6

Dual
Low Loss
SVPWM

IFB (compressor)

DC bus Voltage

AC Voltage

Analog Ref

IFB (PFC)

GATEKILL
(compressor)

To IGBT
gate drive

Motion

Control

Engine

(MCE)

To PFC
FET drive

GATEKILL
(PFC)

Motion Control
Processor

Shared
RAM

4kBytes

MCE
Program

RAM
12kBytes A / D

MUX
S / H

Single shunt
current

reconstruct

PFC
PWM

Motion
Control
Modules

6

Dual
Low Loss
SVPWM

IFB (compressor)

DC bus Voltage

AC Voltage

Analog Ref

GATEKILL
(compressor)

To IGBT
gate drive

Motion

Control

Engine

(MCE)

To PFC
FET drive

GATEKILL
(PFC)

M
o
tio

n
 C

o
n
tro

l B
u
s

www.irf.com 42 UG 06/02/2014

3.2 IR Standard MCE Program

3.2.1 Block Diagram

Figure 40 is a block diagram of the MCE design of the motor control loop. The Simulink model
file (.mdl) and a PDF file of the block diagram can be found within the reference design kit
installation in a sub-folder specific to the kit type (normally \My Documents\iMotion\IRMCS1271 or
\My Documents\iMotion\IRMCS1043). The block diagram has several elements:

 Motion Peripherals—The yellow colored blocks represent the Motion Peripherals, a
subset of the Motion Control Modules. These are controlled by a large number of
registers, which are represented as input and output signals of the yellow blocks. The
yellow block registers provide the interface from the MCE program and MCE firmware.

 Other Hardware and Software Blocks—The other colored blocks in the diagram are I/O
blocks or software and hardware elements which are performed (or called) by the MCE
processor.

 Standard Simulink library components—The MCE Compiler recognizes a subset of the
standard Simulink library components.

Section 3.3 describes these elements of the block diagram in more detail.

3.2.2 Motor Speed control Loop MCE Program

The primary control feature of the MCE program is the speed loop, introduced schematically in
Section 2.3.4.2. The block diagram contains the full speed loop control with protections, limits
and other logic. To follow the speed loop, begin by locating the TargetSpeed register, located
near the upper left corner of the diagram, as shown in Figure 39. After minimum speed protection
and sign conversion logic (based on direction of rotation), the TargetSpeed becomes the input to
the Speed Ramp block. The other inputs to this block (AccelRate, DecelRate & RampScaler)
control the ramp rate of SpdRef (reference speed). The input to the PI (proportional + integral)
block is the difference of SpdRef and SpdFbk. SpdFbk is the actual motor speed, which is
computed in the FOC motion peripheral block and then scaled in the block diagram. The output
of the PI is limited for protection, and then fed back to the FOC block as the TrqRef, closing the
loop. The TrqRef (torque reference) actually serves as the current command to the controller,
because torque is assumed to be proportional to current.

Figure 39—TargetSpeed Register

www.irf.com 43 UG 06/02/2014

Figure 40—MCE Simulink Design of the Motor Control Loop

www.irf.com 44 UG 06/02/2014

3.2.3 Other Features of the Speed Loop MCE Program

Here are descriptions of the other control features of the MCE program, as shown in Figure 40.

 The FOC block contains the current loop (described in Section 2.3.4.1) and the angle
estimator. This hardware block also contains reluctance torque control for IPMs (Section
2.3.4.3).

 The SVPWM block is another firmware block which converts the voltage modulation
command to PWM gating signals for the 3-phase inverter. The default source of the
voltage modulation command is the FOC block, connected together in the MCE firmware.

 The Field Weakening Control logic implements field weakening control as described in
Section 2.3.4.4.

Two of the Motion Peripherals, the FOC block and the SVPWM block, are particularly important to
the motor control. Each one has a large number of input and output registers, which the designer
may add to the block diagram as required (Section 3.4.2.1). Complete block diagrams and
descriptions of the input and output registers can be found in the Reference Manual. It is
recommended that the designer become familiar with these blocks.

Note that the Speed Loop is slightly different for IRMCx143 where there is a speed reduction
function which is designed to limit the output power. See Section 5.1.2 for more information.

3.2.4 Input and Output Registers of the Speed Loop

Torque Limit Registers: StartLim, RegenLim, MotorLim
Scaling or Notation: Range: 0 – 4095
 Scaling: Current (A) = [StartLim] * Irated/4095
Description: These registers limit the value of TorqueRef before it becomes the (torque-

producing) current command to the FOC block.
StartLim applies only during the open-loop stage of the start-up sequence,
while MotorLim applies during normal closed-loop operation.
A non-zero RegenLim allows the TorqueRef variable to become negative,
resulting in active braking (see Section 2.3.5.1). These registers are
configured by MCEWizard100.

Speed Control Registers:
TargetSpeed
Scaling or Notation: Range: 0 – 16383

Scaling: Scaling: Speed (RPM) = TargetSpeed * (Maximum motor speed) /
16383

Description: This register sets the target motor speed and is the value to which the speed
command will ramp. The rate at which the speed command ramps to
TargetSpeed is set by the Ramp Rate Registers.

TargetDir
Scaling or Notation: Range: 0 -1
Description: Set the motor direction with this register. A value of 0 will result in a negative

speed, and a value of 1 will result in a positive speed.
MinSpd
Scaling or Notation: Range: 0 – 2048
 Scaling: Speed (RPM) = MinSpeed * (Maximum motor speed) / 2048
Description: This register sets the minimum motor speed. This register is configured by

MCEWizard100.

Speed Regulator Registers: KpSreg, KxSreg
Scaling or Notation: Range: 0 – 32767

www.irf.com 45 UG 06/02/2014

Description: These registers set the speed regulator PI block proportional (KpSreg) and
integral (KxSreg) gains. The MCEWizard100 calculates values for these
registers. For more detail on the speed regulator tuning, see Section 2.3.4.2.

Speed Feedback Registers:
SpdScl
Description: The variable Rtr_Freq, an output of the FOC block, is scaled to the same

scaling as TargetSpeed using register SpdScl. For details about how this
register is calculated by MCEWizard100, see Section 2.2.3.1.

SpdFiltBW
Scaling or Notation: Range: 0 – 8192
 Scaling: Cutoff Freq (Hz) = PWMFreq * SpdFiltBW / 8192
Description: This register sets the cutoff frequency of the digital lowpass filter for the

speed feedback. To send the signal through unfiltered, set SpdFiltBW to
8192.

Field Weakening Registers: FwkLvl, FwkLim, FwkSpd, FwkKx
Description: These registers control the generation of the field-weakening current

command and are set by MCEWizard100. More information on the
calculation of these registers can be found in Section 2.3.4.4.

Ramp Rate Registers: RampScaler, AccelRate, DecelRate
Scaling or Notation: Range: 0 – 31 (RampScaler); 0 – 32767 (AccelRate, DecelRate)

Scaling: Motor Acceleration Rate (RPM/s) = (Maximum Motor Speed /
16383) * ([AccelRate] / 2^RampScaler) * PWM Frequency

Description: The ramp rate of the speed command toward the target speed is controlled
by these registers. Do not change the value of RampScaler while the motor
is running; it can cause the speed command to change abruptly. These
registers are configured by MCEWizard100.

Miscellaneous Control Registers: VhzEnable
Description: This register is a logic input (0 or 1) for the speed loop when the V/Hz

diagnostic mode is used. This register alone does not enable the V/Hz
diagnostic (see Section 2.2.4.1) .

Read Registers: MotorSpeed
Scaling or Notation: Range: 0 – 16383
 Scaling: Speed (RPM) = TargetSpeed * (Maximum motor speed) / 16383
Description: This register gives the filtered motor speed.

Traceable Parameters:
 SpdFbk, SpdRef
Scaling or Notation: Range: 0 – 16383
 Scaling: Speed (RPM) = TargetSpeed * (Maximum motor speed) / 16383
Description: These are the measured and commanded speeds, respectively.

TrqRef
Scaling or Notation: Range: 0 – 4095
 Scaling: Current (A) = TrqRef * Irated / 4095

www.irf.com 46 UG 06/02/2014

Description: This is torque command, which is an input to the FOC block. This becomes
the torque current command.

3.3 Simulink MCE Design Components

This section describes the components of an MCE Simulink design. Most of your design
components will be taken from the MCE library, but some components of the standard Simulink
library are also used.

3.3.1 MCE Design Hierarchical Format

This section describes the hierarchical structure of a complete MCE system and provides
instructions for creating a new MCE model template

The MCE design hierarchy has the structure shown in Figure 41.

Figure 41—MCE Design Hierarchy

The top level of the system design contains a Configure PWM block and a PWM subsystem
block, which is implemented using a standard Simulink Enabled Subsystem block. The
Configure PWM block has one output, labeled PWM. The PWM subsystem is identified by
connecting the Configure PWM block output to the Enable input of a PWM subsystem block.
There are no other blocks or connections at the top level of the design.

The PWM subsystem contains a Configure Control Loop block and two control loop
subsystem blocks, which are implemented using standard Simulink Enabled Subsystem
blocks. The Configure Control Loop block has two outputs, labeled Speed and Misc. Each

www.irf.com 47 UG 06/02/2014

control loop subsystem is identified by connecting the appropriate Configure Control Loop
block output to the Enable input of a Configure Control Loop subsystem block. There are no
other blocks or connections at the top level of the PWM subsystems.

The procedure described below can be used to create an empty MCE design in the correct
hierarchical format. However, it is generally easier to modify the Standard design, as in the
examples at the end of the Section.

Step 1
Create a new (empty) Simulink model. (From the MATLAB File menu, select New and then
Model.) Right click in the new window and select Model Properties. On the Summary tab
of the Model Properties dialog, you can enter a text description of the design and save your
name as its creator.

Step 2
From the Configuration group of the MCE library, drag a Configure PWM block into the
model. From the standard Simulink library‘s Subsystems group, drag an Enabled
Subsystem block into the model. Connect the output of the Configure PWM block to the
Enable input of the subsystem block. Double click the label under the subsystem block to
enter a name of your choice for the PWM subsystem.

Step 3
Double click the Motor PWM subsystem to open it. Delete the default input and output ports
and the line that connects them. From the Configuration group of the MCE library, drag a
Configure Control Loop block into the model. From the standard Simulink library‘s
Subsystems group, drag Enabled Subsystem blocks into the model. Connect the outputs of
the Configure Control Loop block to the Enable input of each of the subsystem blocks.
Double click the label under each subsystem block to enter a name of your choice for the
control loop subsystem.

Step 4
The hierarchical structure is now complete, and you can begin designing your motion control
algorithms by adding and connecting MCE library blocks in each of the control loop
subsystems.

3.3.2 The MCE Library

The modules of the Simulink library are grouped into seven main categories, with a library model
file in the Simulink Library directory for each category. This section gives a brief description of
each library. Detailed descriptions of each of the blocks are provided in the Reference Manual.
These are:

 Configuration

 Registers

 Control

 Math

 Tools

 Motion Peripherals

 Designs

Simulink library files have a .mdl filename extension (same as Simulink model files). For
example, the Math library file is named Math.mdl.

The MCE library contains various control block modules specific to motor control applications as
well as a number of general-purpose modules for miscellaneous operations and support functions.
The main window of MCE Simulink library is shown in Figure 42. By connecting library blocks in
the MATLAB/Simulink

TM
 environment, the user can design a custom control algorithm based on

www.irf.com 48 UG 06/02/2014

application requirements. A graphic compiler analyzes the completed design and automatically
translates it into a sequence of MCE-specific machine code for integration with the IRMCx100.
The two basic types of hardware resources available on the IRMCx100 are Motion Peripherals
and Control blocks.

Motion peripherals process analog and digital signals and interface to external hardware; for
example, the Low Loss Space Vector PWM module (SVPWM), Sensorless Field-Oriented Control
(FOC) module, and single shunt current reconstruction module. These modules are colored
yellow throughout this document and in Matlab/Simulink

TM
 to distinguish them from other

elements. Each motion peripheral module is used only once in an application design since it
corresponds to a single hardware resource.

MCEControl Blocks are the math, control, and logic elements implemented in hardware. These
modules can be used in an application design as many times as needed. MCEControl block
signals can be connected to another MCEControl Block or to a Motion Peripheral module.
MCEControl Blocks are colored green (for math) or blue (all others) throughout this document
and in MATLAB/Simulink

TM
. There are no pre-defined registers for control block configuration

and monitoring as there are for the motion peripherals.

Additional blocks are provided for support functions such as data initialization and monitoring,
signal delays and page-to-page connections. Some support functions are implemented using
standard Simulink library components.

All blocks are based on 16-bit signed or unsigned integer input and output.

Figure 42—MCE Simulink Library

The seven library groups are described below.

Configuration
The Configuration group contains the Configure PWM and Configure Control Loop blocks that are
used in the formation of the MCE hierarchical design for a complete system. If you create your
system design using the MCE design template file template.mdl or by modifying the standard
design, these blocks are already included at the appropriate locations in the subsystem hierarchy.
(See Section 3.3.1 for more information.)

www.irf.com 49 UG 06/02/2014

Registers
The Registers group contains read and write register blocks, which you can use in any of your
control loop subsystems. If you want to define a configurable parameter that can be set from the
MCEDesigner tool or from an 8051 application, drag a write register block into your design and
connect its output to the input of the appropriate module(s) that will use the parameter. If you
want to monitor a module output from MCEDesigner or an 8051 application, drag a read register
block into your design and connect the module output to it.

Control
The Control group contains the special-function motion control blocks that are used to implement
your motion control algorithms. You can drag these blocks into any of your control loop
subsystems.

Math
The Math group contains general-purpose math and logic blocks that you can use in any of your
control loop subsystems.

Tools
The Tools group contains the MCE Compiler block, which you can add to your design to simplify
access to the MCE compiler (see Section 3.4.3 for more information). The Tools group also
includes a Host Register Summary block, which you can add to your design and use to view and
modify the read and write host register blocks you‘ve included in your design (see Section
3.4.2.2) and a tool that allows you to customize the inputs and outputs of certain motion
peripheral blocks (CustomMotPer, described in Section 3.4.2.1).

Motion Peripherals
The Motion Peripherals group contains the special-function motion peripheral blocks that can be
included in your control loop subsystems. The blocks in this group have input and output
registers that are described in the Reference Manual. Because some of the blocks have a large
number of inputs and outputs, the designer has the ability to enable only the inputs and outputs
needed for the control loops as described in Section 3.4.2.1.

Designs
The Designs group contains sample designs shipped with the product, as well as the system
template design that you can copy and use as a basis for your system designs. You can add
your custom system designs to this library group if you wish.

3.3.3 Standard Simulink Library Components

The standard Simulink library components described below can be included in your design. Enter
―simulink‖ in the MATLAB command window to open the Simulink library.

Enabled Subsystem
Use this block to create PWM and control loop subsystems for your system design. If you start
with the MCE design template file template.mdl, the appropriate subsystem blocks are already
present in the design. Refer to Section 3.3.1 for more information about the use of the Enabled
Subsystem block in the MCE design hierarchy.

Constant
Use this block to define a constant value as an input to a block in any of your control loop
subsystems or macro block definition. Double click the constant block to set a value for the
constant.

www.irf.com 50 UG 06/02/2014

Scope
If you want a module output in a control loop subsystem to have the capability of being traced
(using MCEDesigner‘s trace monitor feature), drag a Scope block into your design and connect
the module output to it. The name you assign to the Scope block will be used in MCEDesigner so
you can recognize the trace item.

Goto and From
If you need to connect elements in two different subsystems of your design, you can use a Goto
block at the source of the signal and a From block at the destination. To avoid cluttering your
diagram with long and roundabout lines, you can also use Goto and From blocks to connect
elements at distant points within the same subsystem.

After dragging a Goto into your design, double click it to set its parameters. Set the tag field to a
unique name, which is used to match the Goto with one or more From blocks. Set tag visibility to
―global‖ if any matching From blocks are in other subsystems or ―local‖ if all matching From
blocks are in the same subsystem as the Goto. (Visibility type ―scoped‖ is not used.) Double
click each From block to set its goto tag. This tag identifies the matching Goto block and must
match the tag you specified in the Goto block.

Note: When a block‘s input is obtained from another subsystem (using a global Goto and From),
The compiler cannot guarantee that the block providing the data will execute before the block
using the data. Depending on the order of execution of the subsystems (which can depend on
product type and configuration), the input data may be current (if the providing subsystem runs
first) or one cycle old (if the providing subsystem has not yet run during the current PWM period).

Unit Delay
You can use the Unit Delay block to introduce a signal delay of one or more PWM cycles. In
certain situations, a delay is required to identify a feedback signal (an input data value obtained
from a previous cycle). For example, suppose an output of block A is used as an input to block B
and an output from block B is used as an input to block A. Both inputs cannot be generated on
the current cycle since one block must execute before the other. A Unit Delay block must be
inserted in one of the two paths (between block A‘s output and block B‘s input or between block
B‘s output and block A‘s input) to identify which signal is obtained from a previous cycle. The
compiler uses this information to sequence the blocks correctly.

After dragging a Unit Delay block into your design, double click it to set its parameters. The initial
condition defines the value of the signal used for the initial cycles until stored values (from
previous cycles) are available. The sample time defines the number of cycles to delay. (Note
that the MCE Compiler‘s use of the sample time parameter differs from Simulink‘s definition.)

Model Info
You can include a Model Info block at the top level of your design to provide a description of the
design and keep track of modifications and version numbers. The Model Info block allows you to
enter text and special variables that Simulink automatically replaces with model property
information such as creator, version and modification date. In addition, the MCE Compiler looks
in the Model Info block to find information about compatible firmware options. See Section
3.4.2.3 for more information on this feature.

3.4 New MCE Design—Start to Finish

This section describes how to create, compile and download MCE designs in the
MATLAB/Simulink environment.

www.irf.com 51 UG 06/02/2014

A Simulink model (.mdl) file defines a graphical Simulink model, or design, using a proprietary
syntax in text format. The basic elements of the definition syntax are Systems, Blocks, Ports and
Lines. A System is a functional collection of Blocks and Lines. A Block is an individual design
component or a representation of a subsystem. Ports define the inputs and outputs of a Block or
a System, and Lines are the connections between Blocks. Using a Block to represent a
subsystem enables the creation of a hierarchical design.

The MCE compiler analyzes the graphical elements defined in a model file to generate the MCE
program to implement the represented design on the Motion Control Engine processor. The MCE
compiler analyzes a Simulink model file and uses information in the database to determine inputs
and outputs for each Block and an execution sequence for the Blocks. It then creates an MCE
executable (.bin) file for a complete system build. The compiler also creates the following
optional output files:

 A register map file that can be imported into MCEDesigner so host read and write
registers defined in the design can be accessed through MCEDesigner at runtime.

 A header file in C source code format that defines the host read and write registers so
they can be accessed from an 8051 application resident on the IRMCx100. (See
Software Developer‘s Guide.)

 A listing file that shows the block sequence and the block input/output connections.

3.4.1 Setting up Matlab/Simulink

Before You Start

The very first time you use the MCE design tools with MATLAB, you need to
create a MATLAB search path for MCE so that MATLAB knows where to find the
MCE Libraries and utilities. To set the search path, you‘ll need to know the
location of the main MCE directory within your iMOTION software installation.
(The default path is C:\Program Files\iMOTION\MCE Compiler, but a different
location can be selected during installation.) If you‘re not sure where the
software is installed on your computer, open an MS-DOS command prompt
window and type the following command:
 echo %MCEBASE%
This command displays the full pathname of the MCE base directory.

To set the search path, start MATLAB and select Set Path… from the File menu.
In the Set Path dialog box, click the Add Folder… button and browse for the main
MCE directory. Click OK in the Browse for Folder dialog box and then click Save
in the Set Path dialog box. Click Close to close the dialog box. (If you don‘t click
Save before you click Close, you‘ll need to add the search path again next time

you run MATLAB.)

3.4.2 Creating a Complete System Design

This section describes how to create a complete system design for execution on the IRMCx100.

Step 1
Start MATLAB, and in the MATLAB command window, type ―mceinit100‖ to open the MCE
Simulink Libraries. Open the standard libraries supplied with Simulink by typing simulink in the
command window.

Step 2
Create a new Simulink model file with the appropriate MCE subsystem hierarchy. The easiest
way to do this is to make a copy of the reference design model file and open it in MATLAB. If you
want to create your own MCE model template, refer to the description in Section 3.3.1.

www.irf.com 52 UG 06/02/2014

Step 3
Compose the design of each control loop subsystem within your model. You can drag and drop
blocks from the MCE libraries into the control loop subsystems. (Do not add blocks to the top
level or the PWM subsystems.) Use Simulink‘s graphical design features to arrange, resize and
connect the blocks appropriately. To document your design you can add annotations and, if you
wish, assign a descriptive name to each line and block.

Step 4
Customize your read and write register blocks. Write register blocks define parameters that you
want to be able to set through the host interface at runtime. Read register blocks define output
values that you want to be able to view through the host interface. To customize a register block,
double click it. In the Parameters section of the Mask Parameters dialog box, follow the
prompts to enter the desired values. This information is exported to MCEDesigner in the register
map file.

Step 5
When you are satisfied with your Simulink design, it‘s time to run the compiler. This procedure is
detailed in Section 3.4.3.

3.4.2.1 Customizing Motion Peripheral Library Blocks

The CustomMotPer tool allows you to modify the inputs and outputs of certain motion peripheral
library blocks. You can add and remove inputs and outputs by selecting from lists of available
signals. A full description of the inputs and outputs is available in the Reference Manual.

To customize a motion peripheral block, first drag it from the library into your design. Then drag
the CustomMotPer block from the Tools library into your design and double-click it.

When you double-click the CustomMotPer block, it starts the Customize Motion Peripheral Block
GUI, as shown in Figure 43. The GUI has a single screen, at the top of which is a pull-down list
of the customizable blocks in your design. Once you‘ve selected the block you want to
customize, the currently defined inputs for the block are shown in the list on the left-hand side of
the window and the currently defined outputs are shown on the right.

www.irf.com 53 UG 06/02/2014

Figure 43—The CustomMotPer Utility

Summary of the display:

 The pull-down list labeled ―Select a Block to Customize‖ lets you choose any one of the
customizable blocks in the design that‘s currently open in Simulink.

 The Inputs and Outputs list boxes show the inputs and outputs (respectively) that are
currently defined for the selected block.

 The pull-down list labeled ―Select an Input to Add‖ lets you choose from a list of inputs
available for addition to the selected block.

 The pull-down list labeled ―Select an Output to Add‖ lets you choose from a list of outputs
available for addition to the selected block.

 Click the ADD button after selecting an input or output from the appropriate ―available‖
list.

 Click the DELETE button after selecting an existing input or output.

 Click the Restore Defaults button to restore the entire block (inputs and outputs) to the
standard default settings (as defined in the Motion Peripherals library).

 When you click DELETE or Restore Defaults, a confirmation message with CANCEL and
OK buttons is displayed in red in the upper portion of the window. Click the CANCEL
button to abort the operation or OK to proceed.

To delete an existing input or output:
In the Inputs or Outputs list box, click on the item you want to delete and then click the DELETE
button. In the upper part of the window, click the red OK button to confirm the operation.

To add a new input or output:
Select an available input or output from the appropriate pull-down list. Click the ADD button to
add the new input/output.

To restore the default inputs and outputs:
Click the Restore Defaults button. In the upper part of the window, click the red OK button to
confirm the operation. This restores all inputs and outputs to the default configuration. (You can‘t
restore only inputs or only outputs.)

www.irf.com 54 UG 06/02/2014

Once you‘ve customized a block in your design, you can copy it to another location in the design
(if the block is allowed to be used more than once) or drag it into another design. For blocks that
can be used once, you can customize each usage of the block with different inputs and outputs.

3.4.2.2 The Host Register Summary Utility

The Tools group of the MCE Simulink library contains a block called ―Host Register Summary‖.
This utility allows you to view a list of the host read and write registers in your design. To use it,
you must first drag the Host Register Summary block into your design. If you start with the MCE
design template file template.mdl, the Host Register Summary block is already present at the top
level.

Once you have added the block to your design, double-click the block to display a summary of
your host read and write registers. If you click on a register in the list, you can view and modify
the register settings.

The main window of the Host Register Summary utility is shown in Figure 44.

Figure 44—The Host Register Summary Utility

The list box in the top section of the main window lists the full ―path‖ of all the registers in your
design. The path identifies the model name and the subsystem in which the register is defined in
addition to the register name. In the example, the path of the selected register is
―Sample/Motor1/Speed Loop/TargetDir‖. This means that the model name is ―Sample,‖ the
register is defined in PWM subsystem ―Motor1‖ and control loop subsystem ―Speed Loop.‖ The
register name is ―TargetDir.‖

The detailed information in the lower section of the window shows the settings defined for the
register that‘s selected in the list box. (Just click on a register to select it.) You can modify any of

www.irf.com 55 UG 06/02/2014

the settings except the register type (read or write). Changes take effect as soon as they are
entered.

3.4.2.3 Providing Information about Compatible Firmware Options

By default, the MCE Compiler links your system design with the standard MCE firmware for the
product type you specify when you compile. If your design interfaces with a different version of
the firmware or can support more than one firmware version, you can provide a list of compatible
firmware options in a Model Info block (a component of the standard Simulink library) and the
compiler uses the option information to link with the appropriate firmware at compile time.

How to Specify Firmware Options in the Model Info Block:
The Model Info block allows you to enter descriptive text in a free format. If you want to add one
or more firmware options to the Model Info block for the compiler‘s use, you must use a defined
format for the list so the compiler can recognize the information. Enter the firmware option
information as follows: Below any descriptive information and variables you would like to include,
enter a line that reads ―Compatible Firmware:‖ (be sure to include the colon). Then on the
following lines, list the names of the compatible firmware options, one option on each line. The
firmware name is the object filename without the file extension. For example, the standard
firmware object file for the IRMCx143 is svpwm143.hex, so the firmware name would be entered
as ―svpwm143‖. An example model info block listing two firmware options is shown in Figure 45.

Figure 45—Example Model Info Block Showing Two Firmware Options

Where to Find the Firmware Files:
The MCE Compiler is located within the installation (typically Program Files\iMotion) in the folder
MCE Compiler\bin. The firmware object files are located in device subfolders underneath MCE
Compiler\bin, where each subfolder is named according to the last three digits of an IRMCx1xx
part number (171, 143, etc.). When you run the MCE Compiler (see Section 3.4.3 below) you
specify a product type and the compiler uses firmware only from the corresponding device
subfolder.

www.irf.com 56 UG 06/02/2014

How the MCE Compiler Chooses a Firmware Option:
After you click the Compile button (see Section 3.4.3 below for details) the MCE Compiler reads
the specified model file and selects a firmware option as follows:

 The compiler uses the default firmware for the specified product type if:
o There is no Model Info block in the design;
o There is a Model Info block but it does not contain a ―Compatible Firmware:‖ list; or
o There is a ―Compatible Firmware:‖ list but no matching firmware files are found in the

device subfolder for the selected product type.

 If the ―Compatible Firmware:‖ list contains only one entry and an object file matching that
entry is found in the appropriate device subfolder, the compiler uses the firmware option
specified in the list.

 If the ―Compatible Firmware:‖ list contains multiple entries with matching object files in the
appropriate device subfolder, the compiler displays a new window listing the valid
firmware options and allows the user to select the desired option.

 If the saved compilation history (docompile.bat file in the MATLAB working directory)
specifies a firmware option, the compiler uses the previously-selected option unless the
user un-checks the ―Use previously selected firmware option‖ checkbox.

3.4.3 The MCE Compiler

Before You Start

The MCE compiler uses the Simulink model file as input. If your design is open
in Simulink when you run the compiler, be sure to save your changes before
running the compiler.

The Tools group of the MCE Simulink library contains a block called ―MCE Compiler‖. You can
access the compiler by copying that block into your design and double-clicking it. If you start with
one of the reference designs or the MCE design template file template.mdl, the MCE Compiler
block is already present at the top level.

When you double-click the MCE Compiler block, the input screen appears as shown in Figure 46.
(The ―Use previously selected firmware option‖ checkbox is not displayed the first time you
compile a design.)

www.irf.com 57 UG 06/02/2014

Figure 46—MCE Compiler Input Screen

Step 1
To compile a complete system design, click the ―Full System Build‖ radio button. You can select
optional output files:

 If you want the compiler to generate a register map file for use with MCEDesigner, check
―create MCEDesigner Map File‖.

 If you want the compiler to generate C-language register definitions in a header file for
use with your 8051 application, check ―create C Header File‖.

Step 2
Select your product type from the pulldown menu.

Step 3
Enter the pathname of your Simulink model file in the ‖Upload Design file (.mdl)‖ edit box, or
browse for the file by clicking the browse button to the right of the edit box. The location where
the output files are saved can also be modified.

Step 4
Check the ―Generate listing?‖ checkbox if you want the compiler to generate an output text file
that lists the order of block execution and all the block connections within your design. This file
can be generated for either a full system or macro block compilation. You can use it as an aid in
testing and verifying your design.

Step 5
If the ―Use previously selected firmware option‖ checkbox is displayed, leave it checked unless
you want the compiler to link with a different firmware version than you used the last time you
compiled.

Step 6

www.irf.com 58 UG 06/02/2014

When you‘re ready, click the Compile button to run the compiler. The compiler checks your
model file for a Model Info block and selects a firmware option as described in Section 3.4.2.3. If
there are multiple options are available and the ―Use previously selected firmware option‖ is not
checked (or not displayed), the compiler displays the Firmware Selection window similar to the
example shown in Figure 47. Select the firmware option you want to use and click the Continue
button.

Figure 47—Example Firmware Selection Window

When compilation is complete, the MCE Compiler results window appears. An example is shown
in Figure 48. To verify that the compiler linked with the firmware option you intended, look for the
message ―Opening system code object file…‖ in the results window and verify that the firmware
name is correct.

If the results window is not displayed, check the ―Status‖ information at the bottom of the main
window for an error message. Many errors are caused by a mismatch between selected product
type and firmware option. Check to be sure you selected the proper product type for your design.

www.irf.com 59 UG 06/02/2014

Time Estimates
The compiler output includes execution time estimates (in system clock cycles) for each control
loop as well as the total size of the MCE program and data. You should review this information
carefully. The compiler displays a warning message if your code and/or data are too large to fit in
the available memory. However, the compiler cannot warn you if the execution time of your
control loops is too long, because the time available for control loop execution depends on the
PWM frequencies configured at run time. These time estimates can be input into
MCEWizard100, which will give the total MCE processor usage based on the PWM frequencies
and the clock frequency. (Check the ―I have modified the MCE Application Program‖ box on the
Welcome page to modify the Motor 1 Cycles on the Options page.) For more information about
setting the clock frequency, see the Software Developer‘s Guide or the Reference Manual.

Note: The compiler produces worst-case time estimates based on cycle counts for all MCE
instructions it generates, including those that may be executed only under certain conditions. The
execution time estimates documented for each block in the Reference Manual are more accurate
and provide a range of cycle counts when execution time varies depending on conditions. For
this reason, the compiler‘s execution time estimate will generally exceed the estimate you would
obtain by summing the documented execution times for each block in the design.

Figure 48—MCE Compiler Results Example

www.irf.com 60 UG 06/02/2014

3.4.4 Downloading to the Reference Board

There are two different choices for downloading to the reference board, one by downloading to
MCE program RAM using MCEDesigner and one by programming the OTP or flash memory of
an IRMCx100 part. The option ―Download to RAM‖ will load the MCE program (.bin file) output by
the MCECompiler directly to the MCE program RAM; if the power to the control IC is removed,
then the program will be lost. This method is described in detail below. Programming OTP or
flash memory is described in detail in the Software Developer‘s Guide, including setting up of all
hardware and software.

3.4.4.1 Download to RAM

If you‘ve recompiled your MCE design and want to do a quick test without programming a new IC,
you can download it directly to RAM and execute it without restarting the target platform. You can
download the code and start execution in a single step, or as separate operations.

Use the following procedure to download MCE code to MCE program RAM on the IRMCx100 IC:

1. Start MCEDesigner and open a configuration (.irc) file.
2. Wait for the status bar to show that the connection is ―Up‖. If the link comes up, but an

error message is displayed showing that there is a mismatch between the MCE program
and register map, you can ignore the error and proceed with the download.

3. Click on the System window and then select Load Target from the Tools menu. The
Load Target dialog appears.

4. In the Load box, click the ―MCE to RAM only‖ radio button as shown in Figure 49. In the
Boot box, check the ―Start MCE‖ checkbox if you want MCEDesigner to start execution of
the MCE code after it‘s loaded. If you want to start execution as a separate operation,
leave the checkbox unchecked.

5. In the Files box, enter or browse for the pathname of your MCE download file. The MCE
executable is generated by the MCE Compiler and has the filename extension ―.bin‖. In
this mode, the 8051 download file entry box is disabled (grayed out). You cannot load
8051 code directly to RAM using MCEDesigner.

6. When you have selected a valid MCE download file, click the OK button.
7. Wait while the file is transferred to RAM over the serial link. This takes only a few

seconds. When download is complete, the message ―Load complete; remote boot not
selected‖ is displayed if you didn‘t check the ―Start MCE‖ checkbox or ―Load and remote
boot complete‖ if you did. (If errors occurred during download, the message ―Load
complete but checksums don‘t match‖ is displayed instead.)

Figure 49—Load MCE to RAM

www.irf.com 61 UG 06/02/2014

If you don‘t check the ―Start MCE‖ checkbox when you download your MCE code, you need to
perform a separate operation to start execution of the code. To do this, open the Load Target
dialog again. This time, click the ―No Load‖ radio button in the Load box and check the ―Start
MCE‖ checkbox in the Boot box. Then click OK.

3.4.4.2 Design ID and Revision Level Monitoring

MCEDesigner‘s design ID and version monitoring is a safety feature designed to prevent
hardware damage caused by using the incorrect register map with an MCE program. This could
cause bad values to be written to critical registers during drive configuration.

A Register Map design ID and version number are stored in every configuration file (.irc file).
These values identify the MCE program that the file was created to support and the version of the
design‘s register map that was last imported to the .irc file. (See the MCEDesigner User‘s Guide
for more information.)

If the design ID or version number of the MCE program currently loaded to the IRMCx100 IC
does not match the ID and version specified for the current Register Map (or if no MCE image is
currently loaded), an error message similar to the one shown in Figure 50 is displayed. You can
continue using MCEDesigner in an ―offline‖ mode, but you cannot read or write any registers or
execute any functions until the problem is corrected.

Figure 50—MCE Program/Register Map Mismatch Dialog

You can see details about the MCE Program and Register Map in the Connection dialog (Click
the System window in MCEDesigner, then select PreferencesConnection.), as shown in Figure
51.

Figure 51—Design ID and Version Details

www.irf.com 62 UG 06/02/2014

3.4.4.3 Importing an MCE Register Map

While testing the reference design, there is no need to modify MCEDesigner‘s register definitions,
since the configuration file shipped with the release exactly matches the reference MCE program.
However, when testing a custom MCE program, be sure to import the modified MCE register map
into the configuration file. MCEDesigner is completely configurable, so it can be used with new
designs as long as the configuration file is updated with the correct register map for the MCE
program.

When making changes to the register definitions, be sure to save the changes in the .irc file
before exiting MCEDesigner. If you select Save from the File menu or answer ―Yes‖ when asked
if you want to save your changes on exit, the current definitions are saved to the file that‘s
currently open. To save your changes to a different file, select Save As… from the File menu.

When you import a new MCE register map, MCEDesigner modifies the Register Structure
Definition section of the database as follows:

 If there is a new register in the MCE design that doesn‘t exist in your database, the
register is added to the Default register group under Write Registers or Read Registers
(depending on the register type). If the name of the register conflicts with an existing
fixed or 8051 register, the MCE register name is modified by appending the characters
―_USER‖ to avoid a conflict. (For example, if your MCE design contains a register named
―MtrCtrlBits‖, the name will be changed to ―MtrCtrlBits_USER‖ when it‘s added to the
database.)

 If the definition of an existing MCE register has been modified, the register definition is
updated to match the definition in the map file.

 If there is an MCE register in your database that is no longer defined in your MCE design,
MCEDesigner displays a message box asking if you would like the register to be deleted
from the register definitions or retained with ―obsolete‖ status. You cannot write to or
read from an obsolete register, and MCEDesigner ignores it when it appears within a
function or subfunction.

If you use MCE registers inside functions and subfunctions, MCEDesigner updates your functions
and subfunctions as follows:

 If there is a new register in your MCE design that doesn‘t exist in the database, it is not
automatically added to any functions or subfunctions.

 If a register definition has been modified, the register is updated wherever it‘s used inside
functions and subfunctions. This includes changes to the register description, but not the
Notes field. (The Notes field is your own personal ―scratch area‖ and is never
automatically updated.)

 If a register is no longer defined in your MCE design and you choose to have it deleted
from the register definitions, it‘s deleted from all functions and subfunctions that use it.

 If a register is no longer defined in your MCE design and you choose to retain it with
―obsolete‖ status, it remains in any functions and subfunctions that use it, but it is ignored
when the function is executed.

Use the following procedure to import a register map file into your database:

1. Open the database you want to update.
2. Click on the System window and then select FileImport Register Map from the menu.
3. When the Load Register Map window (Figure 52) appears, you can enter the pathname

of your map file or click the Browse button to browse for the map file.

4. Click OK twice to open the map file and update the configuration file. Be sure to save the
.irc file before exiting MCEDesigner so your register map updates are not lost.

www.irf.com 63 UG 06/02/2014

Figure 52–The Import Register Map Dialog

3.5 Example Modifications

This section will give two examples of simple modifications to the MCE program. They are
presented here to demonstrate application related issues or requirements which can be satisfied
by modifying the MCE program and also to present other features of the Library blocks.

3.5.1 Torque Mode

Some motor control situations require that the motor provide a steady torque, rather than a
constant speed. The MCE program can easily be changed to provide such a mode. Figure 53
shows the modified section of the block diagram where two write registers have been added,
ModeSelect and TorqueReq. They are both inputs to a new SWITCH block added between the
PI of the speed loop and the LIMIT. Setting ModeSelect to 0 enables Torque Mode, where the
requested torque is supplied directly, while 1 enables the normal speed control mode.

Figure 53—Torque Mode Block Diagram

As a further design example, below are listed some application-related issues which the designer
should consider when implementing Torque Mode. These issues may best be solved with extra
logic (for example) in the block diagram or in the 8051 application code; this choice is determined
by application and design specifications.

www.irf.com 64 UG 06/02/2014

 Scaling—The scaling of TorqueReq (which is really a current command) is same as that

of the limit registers. To interpret it in terms of torque: Torque Requested (N-m) =
(TorqueReq / 4095) * Irated * kT, where the last two terms are the rated current and the
motor torque constant as entered into MCEWizard100.

 Starting—The starting performance may change, depending on the load.

 Current Limit—Note that the SWITCH is placed before the LIMIT block, so that the

StartLimit, RegenLimit, and MotorLimit will still provide protection.

 Speed Limit—There are no speed limiting features in Torqe Mode as implemented. The

application may require some protection logic.

 Changing Modes while running—Application testing can determine whether it is safe to

change modes while the motor is running. The application may require a smooth change
over. (Hint: This can be accomplished using a RAMP block which initializes with the
output of the PI block.)

Naturally, there are other ways to produce a Torque Mode. For example, set the speed loop
gains (KpSreg and KxSreg) to zero so that the output of the PI block is always zero. Then set the
TorqueRef by setting the lower limit of the LIMIT block, LIMIT_M.

Note that MCEWizard100 still properly configures the registers in this modified program, though
the designer must determine the proper values for the two new registers.

3.5.2 Limiting the Speed Feedback Input Variance

In some start-up situations, the speed feedback can exhibit large spikes at the transition from
open-loop to closed-loop due to the time required for the Angle Estimator PLL to stabilize. These
spikes can reduce the reliability of the start-up, depending on the load.

One solution is to limit the input variance of the Speed Feedback filter. Figure 54 below shows
the location in the block diagram. Double Click on the LOWPASS_FILT block and a dialog box
will open which allows the designer to limit the difference between successive inputs to the
LOWPASS_FILT block. The limit value is valid from 0 – 15, and is interpreted as 2

LIMIT
; for

example, a value of 8 will limit the difference between an input and the previous input to 256.
There are several blocks with hidden configurable parameters such as this; see the complete
block descriptions in the Reference Manual. In this scheme, the unfiltered speed change is not
limited, but the effect of an integral controller is to filter this feedback component as well.

Figure 54—Speed Feedback Section

www.irf.com 65 UG 06/02/2014

Note that this block diagram also has an additional scope, UnfiltSpdFbk, as an example of adding
a value which can be monitored with the Trace function of MCEDesigner. This information is
imported into the configuration file as part of the register map file.

www.irf.com 66 UG 06/02/2014

4 Motor Application Hardware Design

This chapter of the Application Developer‘s Guide discusses hardware design issues specific to
the IRMCx100 series ICs. Section 4.1 discusses issues related to the development of the
hardware schematic including the power supply, oscillator, and communication requirements for
component selection, setting the feedback scaling and over current protection. Section 4.2 gives
layout recommendations relating to the current feedback circuit, and Section 4.3 finishes with
some suggestions for testing the board and optimizing the settings. This chapter references
MCEWizard100‘s hardware-dependant settings throughout; to modify these settings, be sure to
check the box next to ―I have modified my hardware‖ in the Welcome page.

4.1 Schematic Elements

This section begins by giving specifications and tips related to component selection for various in-
circuit functions. Next, it reviews the feedback scaling for current and voltage as related to
entering values into MCEWizard100. This section also discusses techniques for A/D offset
compensation and proper overcurrent protection.

4.1.1 Component Selection

The information in this section aids the designer in selecting some of the components of a custom
hardware design.

Power Supplies—The IRMCx100 series IC only requires a 3.3V (VDD1) input with max 60mA
current required. There is an internal 1.8V regulator to provide for the IC logic; capacitors should
be connected between the pins VDDCAP and VSS.

Input Clock—The control IC requires an external clock input for proper operation. This clock
may be generated by a quartz crystal oscillator or ceramic chip resonator. The input clock is
connected to a configurable phase-locked loop (PLL) to generate the internal clock for the IC.
The input clock frequency must be between 3.2MHz and 60MHz, with a resulting internal clock
frequency of 32MHz to 128MHz, which is configured by the user. The Reference Design Kits use
a 4MHz crystal and is configured for a 100MHz clock frequency. Details of configuring the PLL to
generate the internal clock are found in the Software Developer‘s Guide and the Reference
Manual.

JTAG Interface— It is important to provide galvanic isolation to the JTAG interface to protect any
external JTAG interface hardware. If this is not done, then the JTAG hardware ground should be
connected to the ground of the DC bus and the power ground of the IC.

The JTAG has a configurable clock frequency (TCK). Be sure to verify that the isolation circuit is
capable of the data speed. The FS2 JTAG pod has a TCK frequency of 500kHz ~1MHz.

The IRMCS-ISO V3.0 or higher version isolation box contains all of the JTAG isolation related
circuits, nearly identical as the IRMCS1271/1043 isolation circuits and supports both 10-pin and
20-pin FS2 JTAG pod. The isolation box can interface to debug tools for custom hardware
designs which do not include isolation.

RS232 Interface and Driver—Like the JTAG interface, if the RS232 hardware (i.e. the designer‘s
computer) is not at the same ground as the IC and DC bus then isolation should be provided for
protection.

The RS232 interface speed is limited by 8051 clock speed. For full range of options, design
RS232 data circuitry to run at a baud rate of up to 115,200 bps.

www.irf.com 67 UG 06/02/2014

The IRMCS-ISO V3.0 (or higher version) isolation box provides two interfaces to the UART
isolation circuit, one supporting RS232 and another USB for connecting to the PC.

Reset Circuit—Besides galvanic isolation as part of the JTAG interface, the designer may
require bidirectional signal flow for the reset signal. The specific circuit required for a bidirectional
signal will depend on the specifics of the JTAG interface and hardware. Another consideration is
if a hard (physical switch) reset is required, or if a software reset is adequate.

In-Circuit OTP Programming—The designer may want the ability to program the OTP in-circuit
for IRMCK100 ICs. The main interface to perform this function is the JTAG. In addition to the
JTAG interface, there should be a provision to connect the programming voltage (6.75V) to pin
VPP/P1.5. More information on OTP programming can be found in the Software Developer‘s
Guide.
The IRMCS-ISO V3.0 or higher version isolation box contains OTP programming related circuits,
which include 6.75V VPP and JTAG isolation circuits. It can provide an interface for in-circuit
programming of the final application board.

Decoupling Capacitors—The IRMCx100 IC places power supply pins next to ground pins in
order to make it easy for the designer to place decoupling capacitors between these pins; they
should be placed as close as possible to the pins and have values of 0.1uF and 0.01uF,
depending on power supply type and its voltage ripple.

Current Feedback Op-Amp Capacitors—The Reference Designs place capacitors at the output
of the current feedback op-amp, as shown in Figure 56. These capacitors stabilize the op-amp
output, preventing oscillation. The op-amp oscillation varies between production lots and is also
influenced by the layout. The value recommended below will solve this problem provided that the
designer follows the layout guidelines of Section 4.2.1.

We recommend that a 47pF capacitor be placed between the op-amp output and the
analog ground (C33 of Figure 56). The capacitor choice will influence the minimum pulse width
and the sampling delay required because it slows down the response of the op-amp output. A
larger minimum pulse width can result in greater acoustic noise, particularly at low speeds. See
Section 4.3.3.2 for more discussion on choosing the minimum pulse width and the sampling
delay.

4.1.2 A/D Feedback Scaling

4.1.2.1 Motor related AD

There are two important signals that the IC uses in the control of the motor and to protect
hardware: shunt current and DC bus voltage. This section describes how to determine the
correct values to input into MCEWizard100. MCEWizard100 calculates the correct scaled values
to configure the controller based on the user hardware.

Figure 55—DC bus Feedback Voltage Divider

DC bus feedback Scaling—This input to MCEWizard100 is the internal scaling of the DC bus in
cts/V. The DC bus is sensed at AIN0 through a voltage divider. To calculate the proper value for

www.irf.com 68 UG 06/02/2014

this cell, one needs to know that 1.2V input at AIN0 is equal to 4095 digital counts. As an
example, for the DC bus feedback circuit shown in Figure 55, the value for the DC bus feedback
scaling is calculated as follows:

DC bus Scaling (cts/V) = 4095 * (4.87k / (1.00M + 1.00M + 4.87k)) / 1.2 = 8.29 cts/V

Current Feedback Amplifier Gain—This MCEWizard100 input is the gain of the current feedback
amplifier. The user can configure this gain as desired by changing the resistors of the input
circuit to IFB+, IFB- and IFBO. An example is shown in Figure 56,

Motor Current Feedback Amplifier Gain = 11.8k / (5.11k + 1.00k) = 1.93

Figure 56—Current Feedback Circuit

Motor Current Feedback Shunt—Enter the shunt current resistor value into this MCEWizard100
field.

The Verify & Save page of MCEWizard100 displays the current at which the A/D converter
saturates. This is calculated based on the shunt resistor value and the current feedback amplifier
gain. It is important to keep the motor drive current less than this value to keep the currents in
control. For example, if the A/D converter saturates at 10Apk, then the motor current should not
be set higher than 6.4Arms, which leaves ~10% margin before the A/D saturates. On the other
hand, leaving too high a margin will result in low current resolution. If the peak rated current is
less than 25% of the A/D saturation current, then MCEWizard100 will display a warning on the
Verify & Save page.

4.1.3 Gate Drive Signals

The primary outputs of the control IC are the six PWM gating signals. When the PWM gating is
disabled, the output pins of the control IC enter a high impedance state where they are weakly
pulled up, to about 2V. These PWM gating pins should be pulled up or down, depending on the
gate driver IC logic, to prevent unwanted turn on of the IGBTs. The recommended pull-up or pull-
down resistor value is 4.7kOhms.

4.1.4 A/D Converter Offset Compensation

The IRMCx100 series motor controllers utilize an internal Analog-to-Digital converter for feedback
of important system parameters. This ADC, like all others, experiences offset in its
measurements. These offsets can be amplified in measurement situations such as monitoring the
DC bus voltage. With a small ADC input range of 0-1.2V potentially amplified into the 300-400V
range, a small 10mV offset could result in a DC bus measurement error of 10V. Such an offset
may not only affect ADC performance, but rotor angle estimation and field-weakening capability
as well. These effects are minimized by a firmware function.

The firmware contains an automatic A/D compensation function. This function requires the use of
two analog channels to provide the reference voltages for the compensation, with input pins for

www.irf.com 69 UG 06/02/2014

each part and recommended voltages as listed in the table below. Additionally, the MCEWizard
calculates values for registers AdRefH and AdRefL which correspond to the ideal A/D converted
value of each reference voltage.

Reference
Input

Recommended
Voltage

IRMCx171,
IRMCx143

High
Reference

about 1100mV AIN3

Low
Reference

about 100mV AIN4

After the first MCE configuration (MtrSeqCtrl=1), the firmware will accumulate the raw ADC result
of AIN3 & Ain4 for 4096 times (Motor PWM cycles), then take the average value to filter the A/D
result.

By using AdRefH & AdRefL (ideal AD results of AIN3 & Ain4 inputs) the firmware can calculate
the real AD gain and offset information, which is stored as AdGainx1024 & AdOfst. These values
become the K & B, respectively for 2-point AD compensation.

Figure 57 below shows how the AD correction parameters are calculated by the firmware based
on the AD converted result and the ideal AD converted value of the reference voltages. The
correction factors can be read by the designer in registers AdGainx1024 and AdOfst, described in
detail in Section 3.4.25 of the Reference Manual.

(X1,Y1)

(X2,Y2)

X1=AIN3

X2=AIN4

Y1=AdRefH

Y2=AdRefL

K=GAIN=(Y2-Y1)/(X2-X1)

B=OFST=(Y1X2-Y2X1)/(X2-X1)

X (Raw AD result)

Y (ideal AD resut)

Raw AD result Ideal AD result of Ref inputs

Figure 57. Calculation of A/D correction parameters

The AD compensation is actually is the computation of Y=K*X + B, where Y is the compensated
AD result output and X is the raw AD result input.

Please note that AD compensation is only avaibale 4096 PWM cyles after the first MCE
configuration (8051 set to MtrSeqCtrl=1 after power on). Before setting MtrSeqCtrl=1, please
make sure AdRefH & AdRefL as well as all of other MCE registers are correctly configured.
During the 4096 motor PWM cycles, when MCE is calculating the AD offset and gain parameters,
it is better for the 8051 not to read any AD results. It is recommended to wait longer than PWM
period * 4096 before reading AD channels from 8051.

www.irf.com 70 UG 06/02/2014

When this function is enabled, all of the outputs of the the A/D blocks are corrected using the
formula below. The A/D compensation function is enabled by default. To disable A/D
compensation, set bit 9 of the MtrCtrlBits_S register to 1.

There is also an A/D compensation fault which indicates that the correction values are outside of
a reasonable range. If this fault occures, the reference voltages or the values of registers
AdRefH and AdRefL are incorrect, or that the IC has an abnormally large AD conversion error.
More information about the A/D compensation fault can be found in Section 3.3.6 of the
Reference Manual.

4.1.5 Overcurrent Protection

Overcurrent protection circuitry is required by most applications to prevent damage to the
hardware and the motor. The IRMCx100 IC contains an input pin, GATEKILL, which is designed
to provide the overcurrent shutdown signal to the controller, though it can also be used to signal
an arbitrary hardware fault condition. Upon assertion, all PWM gating is halted and the IC latches
a fault. One method of implementing overcurrent protection is to compare the voltage across the
shunt resistor to a voltage set by a resistor network. The output of the comparator is connected
to the GATEKILL pin of the IC through a resistor. To prevent unwanted overcurrent trips due to
switching noise, connect a capacitor between the comparator input and ground. Additionally, the
register GkillFiltCnt sets a minimum GATEKILL signal time, effectively ignoring any GATEKILL
trip signal shorter than this time. Be sure that the inverter stage is compatible with the
overcurrent shutdown latency.

In some types of IRAM modules that include a shunt resistor, the gate drive IC already has
overcurrent protection built in, with a pin assigned to signal the shutdown to the controller. The
gate drive IC shuts down the PWM switching very quickly to protect the power stage. In this
case, connect the pin to GATEKILL so that the control IC is aware of the over current shut down,
and stops the PWM signals.

4.2 Layout Recommendations

4.2.1 Current Feedback Circuit with IRMCx100

The IRMCx100 series IC has the necessary circuitry to implement PFC current (applies to 188
&143), motor single shunt or 2-shunt current feedback including built-in operational amplifiers,
sample & hold hardware, and multiplexers. Sample timing is determined by the PWM logic
automatically. The only things the designer needs to do is add resistors and capacitors in order
to configure the internal operational amplifier as a differential amplifier and then adjust the
minimum pulse width and sampling instances to optimal ones by setting parameters such as
TcntMin3Phs and SHDelay. This process of optimization these settings is described in Section
4.3.

PFC current sampling, and motor single shunt current feedback are similar in that both are very
sensitive to the PCB layout. The guidelines for motor current feedback layout also apply to PFC
current feedback.

Figure 58 shows an example of this differential amplifier circuit. Rsh is the shunt resistor in the
negative DC link current path. The voltage across this shunt resistor (displayed as IFB in Figure
65) is used as the input to the amplifier, the gain of which [R5 / (R1 + R3)] should be set
appropriately to cover the operating range with maximum resolution, as described in Section

www.irf.com 71 UG 06/02/2014

4.1.2. The capacitor C5 is to stabilize Cmext, which is an un-buffered 0.6V reference, and C4 is
for Aref, which is the buffered 0.6V reference voltage. C2 and C3 may also be required to
stabilize the operational amplifier output, IFBO. Check your Reference Design Kit for appropriate
component values. Feedback resistor R5 (=R6) needs to be in the range of 5K to 20K Ohm.
AVDD and AVSS are power pins for the IC‘s analog circuitry and require decoupling capacitors of
0.1 µF and 0.01 µF in parallel.

AREF

IFBO

IFB-

IFB+

CMEXT

AVSS

0.6V

S/H2

MUX A/D
+

-

+

-

IRMCK100

R6

R5

R2

R1

R4

R3

Rsh

C1

C3

C4

C5

Reconstruction

Logic
AVDD

(1.8V)

C6

C2

Dedicated traces

right from the shunt !

Q1 Q2 Q3

Q4 Q5 Q6

D1 D2 D3

D4 D5 D6

U

V

W

S/H1

Make it as

short as

possible
Motor

Make it short

Figure 58—Current Feedback Circuit for IRMCx100

Layout for the single shunt current feedback should be done very carefully. The most important
thing is to use dedicated traces right from the shunt resistor to the resistors of amplifier. Traces
must not be shared with ground planes. Another important consideration is to make the power
traces among the IGBTs and DC bus capacitors as short as possible. The stray inductances on
these traces increase the size of the voltage spike at the switching instances. Figure 59 is a
layout example from the IRMCS3041 Reference Design Kit. On the bottom layer, a trace starts
right from pin 12 of IRAMS10UP60B (3-phase inverter module) separate from ground, i.e., the
negative DC bus.

Another very important issue is that noise from a switching power supply may significantly
influence the current feedback. It is recommended to separate the IRMCx100 ground not only
from the main power ground but also from the power supply primary side ground.

The internal operational amplifiers are specifically designed for this application. They have high
gain, bandwidth, and slew rate to respond to the rapid rise of current through the shunt resistor. A
sample & hold circuit actually tracks the signal and then holds it to reduce the sampling time. For
more information regarding characteristics of operational amplifiers, sample & hold and A/D
converter, please refer to the datasheet of the control IC.

www.irf.com 72 UG 06/02/2014

 (a) Top Layer (b) Bottom Layer

 (c) Schematic

Figure 59—IRMCS3041 Reference Board Layout

4.2.2 Overcurrent Protection Layout

In a similar way to the current feedback layout, the overcurrent protection circuit should have a
dedicated trace from the shunt resistor to the comparator. Additionally, try to route the traces
away from high-current switching nodes to prevent noise induced overcurrent trips.

4.3 Testing and Optimization

Once new hardware is ready for testing, the IRMCx100 IC has registers that can be configured to
help optimize the performance of the motor drive system. This section discusses the techniques
to test critical aspects of the system and then set register values (or MCEWizard100 fields) based
on the tests. The IRMCx100 provides both single and two shunt current feedback schemes,
which are selected by the user configuration. Detailed descriptions of two shunt and single shunt
current reconstruction are presented in Sections 4.3.1 and 4.3.2 respectively.

In addition to the tests described in this section, it is also important to verify the current and
voltage feedback scaling as described in Section 2.2.4.

www.irf.com 73 UG 06/02/2014

4.3.1 Space Vector PWM and Leg Shunt Current Sampling

IRMCx100 has a provision for leg shunt current measurement with the following properties.
- Sampling occurs in the middle of the zero vector V000.
- Full current information is obtained by sampling each current once per PWM period.
- A guard band is required to guarantee current samples at high modulation.
- It is not necessary to have a minimum pulse width.
- The voltage across the shunt resistor is inverted compared to single shunt measurement.

Circuit diagrams of two shunt current measurement are shown in Figure 60.

www.irf.com 74 UG 06/02/2014

a
b

cc

(0
0

0
,
ia

 a
n

d
 i
b

 o
b

s
e

rv
a

b
le

)

a
b

cc

(0
1

0
,
i a

 o
b

s
e

rv
a

b
le

)

a
b

cc

(1
0

1
,
-i

b
 o

b
s
e

rv
a

b
le

)

a
b

cc

(1
1

1
,
n

o
n

 o
b

s
e

rv
a

b
le

)

a
b

cc

(0
1

1
,
-i

a
 o

b
s
e

rv
a

b
le

)

a
b

cc

(1
0

0
,
i b

 o
b

s
e

rv
a

b
le

)

a
b

cc

(1
1

0
,
 n

o
n

 o
b

s
e

rv
a

b
le

)

a
b

cc

(0
0

1
,
i a

 a
n

d
 i

b
 o

b
s
e

rv
a

b
le

)

Figure 60—Two Shunt Current Measurement

www.irf.com 75 UG 06/02/2014

As mentioned above, sampling of both currents must happen in the middle of the zero vector
V000 as shown in Figure 61. By sampling at this instant, the true average current is sampled and
unless the modulation index is approaching 1 there is plenty of time to sample. Because of the
propagation delay of the HVIC driver and power device‘s turn on/off delay in the real hardware,
the current sample instant should also include this delay. In MCEWizard100, input the delay at
―Gating Propagating delay‖, normally set to 0.6us in IRMCS1043 and IRMCS1271.

ta

a

b

c

tb

tc

Tsw Tsw

Samp. a

Samp. b

Figure 61—Sampling of Leg Shunt Currents

When the modulation index is close to unity, V000 is very short, leaving little or no time to sample
leg currents. A consequence is that the non-observable region is as shown in the figure below.

V1

V2V3

V4

V5 V6

Figure 62—Non-observable Region with Leg Shunt.

To ensure that the currents can be observed, set a Guard Band in MCEWizard100. Figure 63
below shows how the Guard Band is defined. Note that the Guard band is applied at the
beginning and end of the PWM cycle. This is normally set from 0 – 2us, where 0us is used only
where there is some DC bus headroom and no field weakening operation.

www.irf.com 76 UG 06/02/2014

U

V

W

U

V

W

U

V

W

one pwm cycle

PwmGuardBand

Figure 63—Guard Band Insertion

4.3.2 Space Vector PWM and Single Shunt Current Reconstruction

The IRMCx100 Series IC can use a single shunt current reconstruction circuit and methodology
to minimize external analog and digital circuitry. In order to implement sensorless field oriented
control, it is crucial to measure the motor winding currents precisely. The single shunt current
reconstruction method derives all necessary current feedback by sampling the currents in the
shunt resistor, thus eliminating the need for isolation circuits or magnetic current sensors. The
space vector modulator generates sample timing signals based on the power inverter state. The
IC integrates the A/D converter and amplifier to sample the voltage across the shunt resistor.
Under certain operating conditions the DC link current pulses may become too narrow to
guarantee reliable extraction of winding current data.

Space vector modulation is a technique to generate the three-phase power inverter switching
signals based on the desired three phase voltage output. Each leg of the power inverter can
connect the load to either the positive or negative DC bus. In one active inverter state, the
switches connect one winding to the positive rail and the other two windings to the negative rail.
In the example presented here, 2/3 of the bus voltage is across one winding and 1/3 of the
voltage is across the other phase windings. In another active state, the switches connect two
windings to the positive rail and the other winding to the negative rail. In the zero vector states,
the switches connect all three windings to either the positive or the negative rail.

Figure 64 shows the six active vectors and two zero vectors (V0 – V7) available using three
inverter switches. It also shows how switching between two active inverter states can produce
any specified inverter voltage. For example, to produce voltage V* in the sector 1, the inverter is
in state V1 for time Ta and in state V2 for time Tb. The inverter is in a zero vector state for the
time remaining in the switching period. Typically half of this time (T0) is in the V0 state at the
beginning of the cycle and the other half of the time is in the V7 state at the end of the cycle.
Figure 65 shows the resultant inverter switching signals where voltage vectors V0, V1, V2 and V7
are applied for time periods T0, Ta, Tb and T7. Applying these voltage vectors in the inverse
sequence in the second half of the PWM cycle generates symmetrical PWM signals. Since V* is
closer to V1 (which is aligned with U phase), V1 is applied for a longer time than V2 (Ta>Tb).

www.irf.com 77 UG 06/02/2014

V4 (0 1 1)

V2 (1 1 0)

V1 (1 0 0)

V3 (0 1 0)

V6 (1 0 1)
V5 (0 0 1)

V0 (0 0 0)

V7 (1 1 1)

Tb

V*

dcV
3

2

U

V

W


Ta

Sector 3

Sector 2

Sector 1

Sector 4

Sector 5

Sector 6

Figure 64—Inverter Output Voltage Space Vectors

A real 3-phase inverter uses a combination of transistors (IGBTs or MOSFETs) and anti-parallel
diodes as the power switches, as shown in Figure 58. A high voltage integrated circuit provides
level shifting between the logic level signal from the digital control IC and the transistors, which
switch between the positive and negative DC bus. The polarity of the ‗on‘ signal may be active
high or active low depending on the design of the gate drive HVIC. There must be a delay, or
―dead time,‖ between the high side turn-off signal and the low side turn-on signal. This allows the
high side power transistor to turn off completely before the low side transistor turns on (or vice
versa) to avoid a shoot-through condition that can damage the power devices. The actual gate
drive signals from the control IC include the dead time between all inverter state transitions, so
there are six inverter switching signals: PWMUH through to PWMWL in Figure 65; in this case,
the gate drive circuit accepts active low logic inputs. The modulation circuit typically inserts the
dead time but the gate drive circuit can also provide this function. Active high/low gate logic
selection is available through a control register, activepol, on the IRMCx100.

www.irf.com 78 UG 06/02/2014

PhaseU

V0 V1 V7V2 V7 V2 V1 V0

TbTa T0T0 Tb Ta T0T0

PhaseV

PhaseW

SYNC SYNC

PWMUH

PWMUL

PWMVH

PWMVL

PWMWH

PWMWL

Dead

Time

Dead

Time

Dead

Time

Dead

Time

Dead

Time

Dead

Time

(Iu) (-Iw) (-Iw) (Iu)

Td_Off

(b) Q4 OFF

(c) Q1 ON

D4 OFF

(d) Q5 OFF

D2 ON

(e) Q2 ON

(f) Q6 OFF

(g) Q3 ON

D6 OFF

(h) Q3 OFF

D6 ON

(i) Q6 ON

(j) Q2 OFF

(k) Q5 ON

D2 OFF

(l) Q1 OFF

D4 ON

(m) Q4 ON

Td_On

Td_Off

Td_On

Td_Off

Td_On

Td_Off

Td_On

Td_Off

Td_On

Td_Off

Td_On

Ta/2

SHDelaySHDelay

Tb/2

S/H 1 S/H 2
Ta/2Tb/2

S/H 1 S/H 2

Voltage

across shunt

(IFB)
(a)

Figure 65—PWM Gate Signals in Sector 1

The motor current reconstruction circuit measures the DC link current in the shunt resistor during
the active vectors of the PWM cycle. When the voltage vector V1 is applied, current flows from
the positive rails into the phase U winding and returns to the negative rail through the V and W
phase windings. In this instance, the DC link current flowing from the positive rail equals the U
phase current. When the voltage vector V2 is applied, the DC link current returning to the
negative rail equals the W phase current. Therefore, in each sector, two phase current
measurements are available. The calculation of the third phase current value is possible because
the three winding currents sum to zero.

4.3.3 Inverter-Related Testing and MCEWizard100 Settings

The 3-phase inverter is the major subsystem of the motor drive hardware. It is important to
configure the controller with the correct values for inverter dead time and current sample timing

www.irf.com 79 UG 06/02/2014

(for example) to get the best performance from the inverter hardware. This section describes
registers and settings to align the controller with the inverter.

4.3.3.1 Miscellaneous MCEWizard100 Settings

Gate Drive Hardware section—Check the specifications of the gate driver IC to set these
MCEWizard100 fields correctly. These parameters set the logic sense for the PWM gating
signals. The GATEKILL input is always active low (low true) in IRMCx100 ICs.

Inverter Dead Time—Dead time is used to prevent shoot-through, a condition where both the
high side and low side IGBTs are on at the same time, which can damage the inverter
components. To choose the dead time, carefully check the turn-on and turn-off times of the
IGBTs. Also, the gate driver IC delay matching should be taken into account.

Bootstrap Capacitor Charge Pulse Width and Delay—These parameters govern the bootstrap
pre-charging process for the gate driver IC. For more information, see the Reference Manual.

4.3.3.2 Current Feedback Sample Timing

The current sampling instant should be at the midpoint of the active space vector state to sample
the average current. This sample instant for the first current sample is at time Ta/2 after the start
of the first active vector V1, as shown in Figure 65. The space vector modulator calculates this
timing when it calculates the timing for the gate drive signals. In a symmetrical PWM scheme,
there are also two active vectors in the second half of the cycle and so two sets of current
measurements are available. Averaging of the two sets of measurement improves the reliability of
the current feedback.

Successful implementation of motor current reconstruction requires detailed knowledge of power
inverter operation to account for circuit delays that can result in incorrect current sampling. The
error introduced by sampling delays depends on the magnitude of the motor current ripple, which
depends on the bus voltage, switching frequency winding inductance and motor back emf. The
IRMCx100 includes a sampling delay register, SHDelay that allows the system designer to
compensate circuit delays to ensure accurate current measurement. The voltage across the DC
link shunt resistor, IFB, in Figure 65 illustrates how to calculate the sampling delay compensation.
Figure 66 illustrates current flow associated with the dead time and each switching instance to
display the change of current path and reverse recovery current from the diode. In this example,
Iu > Iw > 0 > Iv and the IGBT is modeled as a switch with a diode. Depending on the current
direction, sometimes turning on or off the switch doesn‘t change the current flow. A thunder mark
on a diode indicates the reverse recovery action of the diode.

 (a) Zero Vector V0 (b) Q4 OFF

www.irf.com 80 UG 06/02/2014

 (c) Q1 ON, D4 OFF (d) Q5 OFF, D2 ON

 (e) Q2 ON (f) Q6 OFF

 (g) Q3 ON, D6 OFF (h) Q3 OFF, D6 ON

 (i) Q6 ON (j) Q2 OFF

 (k) Q5 ON, D2 OFF (l) Q1 OFF, D4 ON

www.irf.com 81 UG 06/02/2014

 (m) Q4 ON

Figure 66—Current Flow Example in Sector 1

There is a delay between gate driver IC input and output, and another delay from gate driver
output to real switching instance of the device such as IGBT. This is a function of gate charge
and gate impedance. Td_On and Td_Off in Figure 65 are the sum of these two delays
respectively. For example if the gate driver delay is 400ns and the IGBT turn on and off delays
are 190ns and 700ns respectively, then:

Td_On = gate driver delay + transistor turn on delay = 400 ns + 190 ns = 590 ns
Td_Off = gate driver delay + transistor turn off delay = 400 ns + 300 ns = 700 ns

There is a limitation such that an active vector must exist for a minimum time to ensure a reliable
sampling of the DC link current. This minimum time is set by the MCE registers TcntMin3Phs for
three-phase modulation and TcntMin2Phs for two-phase modulation. This lower bound on the
minimum time results in a limitation when the modulation index is small (small voltage) or the
voltage vector passes an active vector. The areas where problems exist are highlighted in Figure
67.

Figure 67—Areas Where Reliable Sampling is Difficult

The minimum time required for reliable current sampling adds an undesired voltage distortion,
which may cause audible noise especially in low speed operation. In order to minimize this time,
it is important to understand when sampling occurs. Ideally, the current sample should occur at
the center of the active vector, which results in an average value of the current regardless of the
slope related to motor inductance. However, as discussed previously, actual switching happens
after a certain period of time from the edges of PhaseU, PhaseV, and PhaseW. This delay can

www.irf.com 82 UG 06/02/2014

be as short as Td_Off and as long as dead time plus Td_On. Sampling timings can be adjusted
using the SHDelay register such that sampling occurs at one half of the active vector time plus
SHDelay after the edges of PhaseU, PhaseV, and PhaseW. For example, in Figure 65, the first
sampling instance is Ta/2 plus SHDelay after the rising edge of PhaseU. The real switching
instance occurs either Td_Off or Td_On plus dead time after the edge of PhaseX. Thus, SHDelay
can be set to cover worse case as follows:

SHDelay = Td_On + dead time (1)

Since sampling should be done after the ringing settles down even in the case of minimum pulse,
a condition for sampling delay from the PhaseX edge can be derived as below.

minimum pulse /2 + SHDelay > dead time + Td_On + ringing time (2)

The left hand side is the sampling delay in the case of an active vector with minimum pulse and
the right hand side is the actual delay time required to sample without noise.

From (1) and (2), the minimum pulse can be derived to be:

minimum pulse > 2 * ringing time (3)

Remember that (1) to (3) are the mid-point sampling case. If the slope of the current is not steep,
delaying the sample instance further to the end of the active vector can reduce the necessary
minimum pulse. Because the switching of the next ―PhaseX‖ edge also has at least Td_Off (or
sometimes even dead time plus Td_On) to have a real switching instance, the minimum pulse
can be as small as the following equation:

minimum pulse = dead time + Td_On + ringing time - Td_Off (4)

This can be put into (2) to get the proper SHDelay.

(dead time + Td_On + ringing time - Td_Off) / 2 + SHDelay
> dead time + Td_On + ringing time (5)

SHDelay = (dead time + Td_On + ringing time + Td_Off) / 2 (6)

If the motor inductance is small and the sampling should be done at the center, Equation (3) and
(1) should be used to get the minimum pulse and SHDelay. If the application requires a shorter
minimum pulse and slope of the shunt voltage is not steep due to a relatively high inductance of
the motor or small DC bus voltage, then equation (4) and (6) can be used. Keep in mind that
Td_On and Td_Off can vary depending on the operating condition.

Note that in MCEWizard100 there are two input parameters the sum of which determines the
value of SHDelay—―Inverter Dead Time‖ and ―Gating Propagation Delay.‖ Set the Inverter Dead
Time to the desired dead time, and then set Gating Propagation Delay according to equation (1)
or (6) depending on the application conditions.

4.3.3.3 An Example of Optimizing the Current Feedback

Figure 68 shows the real waveforms for V* in sector 1 of Figure 64. Channel 1 is voltage across
the shunt resistor and the others are low side gate signals (active low case). U phase current (Iu)
is positive during vector V1 and negate of W phase current (-Iw) is negative during vector V2,
which means W phase current is positive.

www.irf.com 83 UG 06/02/2014

Figure 68—Waveforms in Sector 1

Figure 69 is a collection of waveforms when active vector changes. This figure can be better
understood together with Figure and Figure 66. It can be observed that ringing is most severe at
the transition from V2 to V1, in which case the largest amount of current is flowing through D2
and therefore reverse recovery is also most significant.

 (a) V0 to V1 (b) V1 to V2

 (c) V2 to V7 (d) V7 to V2

Ch1 : IFB
Ch2 : UL
Ch3 : VL
Ch4 : WL

www.irf.com 84 UG 06/02/2014

 (e) V2 to V1 (f) V1 to V0

Figure 69—Vector Transition Waveforms in Sector 1

The waveform in Figure 70(a) is captured to measure the longest ringing time at the transition
from V2 to V1. High frequency noise stops within 0.6 µsec, but there is also slow component
which ends in 0.85 µsec. However, the operational amplifier output (IFBO) is the one that needs
attention here because this is the input to the sample & hold. Figure 70(b) shows IFBO and AREF
together with IFB. Some slow noise components in AREF are reflected into IFBO. This ripple
ends in 1.25 µsec.

 (a) IFB at V2 to V1 (b) IFBO and AREF

Figure 70—Ringing at Transition from V2 to V1

When dead time is set to 500 ns, equation (1) and (3) give:

SHDelay = Td_On + dead time = 590 ns + 500 ns = 1.1 µsec

minimum pulse = 2 * ringing time = 2 * 1.25 µs = 2.5 µsec

Figure 71(a) is a trace buffer plot from MCEDesigner for this case. Figure 71(b) is a plot when
SHDelay is 1.1 µsec and minimum pulse is 1.5 µsec. Some glitches exist due to slow ripple
component.

Ch1 :
IFB

Ch2 : UL

Ch3 : VL

Ch4 :
WL

Ch1 : IFB

Ch2 : IFBO

Ch3 : VL

Ch4 : AREF

www.irf.com 85 UG 06/02/2014

 (a) SHDelay 1.1µs and MinPulse 2.5 µsec (b) SHDelay 1.1 µs and MinPulse 1.5 µsec

(c) SHDelay 1.5 µs and MinPulse 1.7 µsec

Figure 71—Phase Current Plot from Trace Buffer

From equation (4) and (6),

 minimum pulse = dead time + Td_On + ringing time - Td_Off
 = 0.5 + 0.59 + 1.25 - 0.7
 = 1.64 µsec

 SHDelay = (dead time + Td_On + ringing time + Td_Off) / 2
 = (0.5 + 0.59 + 1.25 + 0.7) / 2
 = 1.52 µsec

Figure 71(c) is a plot for this case and seems as good as 62(a). These plots in Figure 71 verify
equations (1) to (6).

www.irf.com 86 UG 06/02/2014

4.3.4 Overcurrent Protection

The overcurrent protection circuit prevents damage to the motor and inverter by shutting down
the PWM switching outputs of the control IC when the current across the DC link shunt resistor
reaches some threshold level. When verifying new hardware, the overcurrent protection circuit
should be tested early in the process.

To test the overcurrent protection circuit, begin by verifying that the comparator input voltages are
at the expected values when the hardware is powered up. Also calculate the expected trip
current. If possible, use a DC current source to run current through the shunt resistor and test the
overcurrent trip level.

Attach current probes to the motor phases. Connect an induction motor to the hardware and run
the ―VF Diagnostic‖ function. To test the trip level, increase the motor current by gradually
increasing the value of VFGain register until a GATEKILL fault occurs. To capture the current
waveform at moment of the fault, trigger on the GATEKILL signal.

As a final, potentially destructive test, short circuit the motor phases; be sure to have current
probes on each phase and to be triggering on the GATEKILL signal with the oscilloscope. Start
the motor, and an overcurrent trip should occur immediately. Check the delay time from the
current reaching the threshold to the trip occurring. Verify that this shut down time is fast enough
to protect the transistors of the 3-phase inverter. Modify the GATEKILL circuit capacitances
and/or the value of GkillFiltCnt to adjust the shutdown time.

www.irf.com 87 UG 06/02/2014

5 PFC Application Development

Power Factor Correction (PFC) is a technique used to match the input current waveform to the
input voltage, as required by government regulation in certain situations. The power factor, which
varies from 0 to 1, is the ratio between the real power and apparent power in a load. A high
power factor can reduce transmission losses and improve voltage regulation. Regulations will
specify the condition at which to demonstrate the effectiveness of the PFC.

The IRMCx143 & IRMCx188 includes op-amps for sensing the AC input voltage and PFC current;
along with the DC bus, this sensing allows the MCE to perform digital PFC control. The
Reference Design Kit for this part number includes an IR-supplied MCE program to perform the
PFC, described in Section 5.1. Figure 72 below shows the simplified topology of the boost PFC
control employed in the reference design kits, with the necessary sensing parameters labeled.

Vac

VDC

Ipfc

Figure 72—Basic PFC Circuit

The first section of this chapter describes the MCE program which does the digital PFC control
including the structure of the control loops and the configuration parameters. Section 5.2 gives
guidelines for PFC inductor measurement. Next, Section 5.3 gives basic information and
instructions for using the PFC as implemented in the IRMCS1088 Reference Design Kit. It also
describes some hardware modifications, tuning and optimization techniques and advanced
capabilities of the PFC control. Section 5.4 continues with guidelines for hardware design,
optimization and testing of the PFC as related to the IRMCx143 & IRMCx188 IC. Finally Section
5.5 describes full mode PFC and partial PFC application.

+
++

12 bit

ADC

-

Power

Converter

Current

Controller

PI

Modulator

Up/ down

counter

Multiplier

+
-

Voltage

Controller

PI

Feed

Forward

controller

Vac

Ipfc

PWM

PFC Controller (MCE)

absolute value

Cdc

L

AC

input

DC output

I ref

Ipfc|V |ac

Vdc

Vdc

Vref

Figure 73—PFC Control System

www.irf.com 88 UG 06/02/2014

Figure 73 provides a high-level block diagram of the PFC control scheme, as implemented in the
IRMS1043 Reference Design Kit. The digital control portion on the left is implemented in the
MCE program, while the portion on the right with the blue shading represents the PFC and DC
bus hardware components.

There are two control loops in Figure 73, an inner current loop and an outer voltage loop, along
with a feedforward (FFW) component. The output of the voltage controller is multiplied by the
rectified ac voltage to produce a current reference. The output of the current controller is added
to the feedforward output to generate the modulation command. This PFC control scheme
requires sensing of the PFC current, AC line voltage and DC bus voltage.

To view parts of the PFC controller in detail, a PDF version of the Simulink Model file is part of the
files installed with the reference design kit (in My Documents\iMotion\IRMCS1043). Each
component of the controller is described fully in Section 5.1.

5.1 PFC MCE Program

5.1.1 Current Loop

A simplified block diagram of the current loop is shown in Figure 74.

Ls 

1

s

IKI
IKP

_
_ 

odPFCPwmPeri
dcV PFCi

+

senseR
gainHW

ref

n

ADC

2

-

Controller Modulator

ADC Amplifier Sensor

Power Stage

refi

Figure 74—Simplified Current Loop

The controller gains, KP_I & KI_I, are automatically configured by MCEWizard100 for a
bandwidth of 1400Hz. This bandwidth is chosen because it satisfies the control requirements
without excessively amplifying current feedback noise. Also, the achievable bandwidth of the
loop is limited by the control delay of 0.5 to 1 PWM cycle and the PFC PWM frequency. In order
to keep a constant loop gain, based on the diagram above, the current controller PI gains scale
as:

uencyPFCPwmFreqAR

L
IKI

uencyPFCPwmFreqAR

L
IKP

IPFCsence

IPFCsence











_

_

where AIpfc is the current sense feedback gain which includes the resistor divider and A/D
converter gain and Rsence is the current sense resistor.

The complete current loop implementation in the MCE program is shown in Figure 75. The PFC
current amplitude, which is output from the PFC voltage loop, is a quasi-DC signal at steady-state
power. The current amplitude is multiplied by the instant AC voltage and then rescaled to obtain
the PFC current reference (I_Ref), containing both amplitude and phase information for the
desired PFC input current. I_Ref is compared with the real PFC input current to get the current
error (I_error) which is sent to a PI regulator. The output of the PI regulator generates only a part

www.irf.com 89 UG 06/02/2014

of the PWM command, since the PI current regulator BW (about 1.4KHz BW is setup by
MCEWizard100) is not high enough for perfect current tracking. The PI regulator BW is limited by
the PFC frequency (for example, 18KHz supports a maximum BW of 1.8KHz) and the PFC
current feedback noise (which depends on the PCB layout).

The remainder of the PFC PWM command is generated by a feedforward block, lowering the
burden on the PI regulator. The sum of FFD and current PI output is limited to [0 ~ Limit_P_I,
MAX range 0~16383] for protection, then a two-bits shift (4x) to fit the input range of PFC PWM
block ([0~65535] corresponding to 0~100% duration).

Inside the PFC_PWM block, there is a PFC state machine, current & voltage and minimum pulse
blanking. For more information, please refer to the IRMCx100 Reference Manual.

go to PI enable

PFCEnable

go to PFC _Vdc_Blanking

PFC_Vdc _Blanking

Vdc_AD

Vdc_AD

VAC_PEAK

VAC_PEAK

Signed 3

0

Signed

1

SUM

IN1

IN2

OUT

OV

SHIFT 1

IN

EXP

OUT

SATP_V

z

1

SATM_V

z

1

PWM _command

PFC_SENSE

IPFC

VAC_IN

DC_BUS_VOLTS

VAC_PEAK

PFC_PWM

I_REF

PFC_Vdc_REF

PWM_Command

PFC_PWM _ON

PFC_Vdc_Blanking

PFC_Multiplier

I1

I2

SIGNED

LOBIT

HIBIT

OUT

IN1

IN2

SIGNED

LOBIT

HIBIT

OUT

PFC_FFD

IN_VAC

IN_VDC

SCALE 1

SCALE 2

LIMIT

ADD

OUTPFC_Current _PI

Input 1

Input 2

KP

KI

HOLD _P

HOLD _M

ENABLE

Output

PFC_CL_out

Low Bit

10

Limit _P_I

LIMIT _PFC_CL_PI

Input

LIMIT _P

LIMIT _M

Output

SATP

SATM

KP_I

KI_I

I_ref

I_error

High Bit

25

FromVoltageLoop 2

[Vdc_Ref]

FromVoltageLoop 1

[Vdc_Ref]

From voltage loop

[VAOut]

FFD_SCALE

FFD_MULT

FFD_Limit _P FFD_ADD

FFD

DIFF

A

B

S

OV

C16

2

Enable

Figure 75— MCE Implementation of the PFC Current Control Loop

5.1.2 Voltage Loop

dcCs 

1

s

VKI
VKP

_
_ 

dcV

+

refV

senseK
ref

n

ADC

2

-

Voltage Controller

ADC

Sensor

DC-link

curK

Current

Controller

dci
ini

loadi

+

-

inputP

refV

Figure 76—Simplified PFC Voltage Loop

Figure 76 gives a simplified block diagram of the voltage loop in the s-domain. The current
controller is represented as a gain component; this can be done because the current regulator
bandwidth is much larger than the bandwidth of the voltage loop. MCEWizard100 configures the
voltage controller gains, KP_V & KI_V, in order to achieve a bandwidth of about 10 Hz. Note that

www.irf.com 90 UG 06/02/2014

the PFC voltage loop is executed at the motor PWM frequency as defined in the options page of
MCEWizard100. In order to keep a constant loop gain, from the diagram above, the voltage
controller PI gains scale as:

VacVdc

dc

VacVdc

dc

AA

C
VKI

AA

C
VKP







_

_

where AVdc and AVac are the dc bus and ac input voltage feedback gains, respectively, which
include the resistor divider and A/D converter gain. The ac voltage feedback gain appears
here because the output of the voltage regulator is multiplied by the rectified ac voltage.

The MCE program implementation of the PFC voltage loop is shown in Figure 77. To follow the
PFC voltage loop, locate the Vdc_Ref register in the upper left corner of the diagram. SWITCH5
selects between DC bus reference signals for full and partial PFC modes—Vdc_Ref or
(Vac_PEAK – VdcHyst), respectively, selected by the write register PartialPFC_ON. A RAMP
block prevents the DC bus reference from changing discontinuously before it passes to the PFC
Voltage Loop as input Real_PfcDCRef. The DC bus voltage should normally ramp for 100 –
200ms to rise to the steady-state value. The input to the PI regulator is the difference between
Real_PfcDCRef and Vdc_AD while the output of the PI is limited to [0 – Limit_P_V] for protection,
and then sent to the PFC current loop.

VoltageLoopOutput 1

Vdc_Ref

VoltageLoopOutput

VAOut

Vdc_Ref

Vdc_Error

Vdc_Error

Vdc_AD

[Vdc_AD]

VdcRef

VdcHyst

V_error

VL_Out

VAC_PEAK

[VAC_PEAK]

Signed 2

0

SWITCH5

Input 1

Input 2

SELECT

Output

SAT_PFC_VL_P

z

1SAT_PFC_VL_M

z

1

RAMP

Input

ACC_RATE

DEC_RATE

SCALER

ENABLE

INIT

Output

PartialPFC _ON

PI

Input 1

Input 2

KP

KI

HOLD _P

HOLD _M

ENABLE

Output

PFC_VL_out

PFC_RampScl

PFC_ON_Motor _I

PFC_MOTOR _MISC1

PfcPower _W

ACV_RMS _V

ACI_RMS _Ax10

MotorI _RMS _Ax10

DcV_RMS _V
Motor _I

Limit _P_V

LIMIT

Input

LIMIT _P

LIMIT _M

Output

SATP

SATM

KP_V

KI_V

HostPFCEnable

[PFCEnable]

Decel

DIFF1

A

B

S

OV

DIFF

A

B

S

OV

COMPARATOR 1

Accel

AND2

AC_Power

ACV

ACI

Enable

Figure 77—MCE Implementation of the PFC Voltage Control Loop

The PFC voltage loop is enabled mainly by the PFCEnable write register and PFC state machine.
However, the PFC_ON_Motor_I input register and COMPARATOR at the bottom left corner of
the diagram serve to disable the PFC voltage loop when the motor current is lower than
PFC_ON_Motor_I. MCEWizard100 configures PFC_ON_Motor_I = 0 by default so that the PFC
can run independently of the motor status.

www.irf.com 91 UG 06/02/2014

5.1.3 Feedforward

2
SCALE1

Limit
SCALE2

LIMIT

ADD

IN_VAC

IN_VDC

OUT-

+

Figure 78—FFD Block Implementation

Figure 78 provides a block diagram of the internal operation of the PFC_FFD block. The input
AC voltage is divided by the DC bus voltage, then scaled and limited. The result is subtracted
from a dc component to produce the FFD signal. Figure 79 shows an example of the FFD output
and the current regulator output (note that the traces have been scaled up by 4x to correspond to
the modulation scaling where 65535 = 100% modulation). The FFD provides a large duty cycle
command during the AC voltage zero crossing which reduces the demand on the current
controller.

Figure 79—Current Regulator Output (yellow) and Feedforward Output (green)

Depending on the DC bus and AC Input voltage scalings, the FFD output can exhibit significant
quantization if SCALE1 is set to too low a number. The quantization can lead to degradation of
the PFC performance. This problem is avoided when using the IR default MCE program and
configuring with MCEWizard100.

www.irf.com 92 UG 06/02/2014

5.1.4 PFC State Machine

A simple state machine manages the PFC related input and outputs which deal with the following
items:

1. Disable/Enable AcV&AcI RMS and PFC power calculation according to MtrCtrlBits_S bit7.
2. Disable/Enable AC status handling (AC OV & UV detect) according to MtrCtrlBits_S bit8.
3. Check for completion of the IPFC offset correction.
4. Check for motor or PFC faults.
5. Vac peak voltage detection.
6. Vdc blanking signal generation if Vacpeak > VdcBus.
7. Check PfcEnable command and decide whether to set PfcPwmOn flag to enable PFC

PWM.

PfcPwmOn indicates the final PFC PWM status:
PfcPwmOn = 1 when PFCEnable = 1 and none of the conditions below are true.
PfcPwmOn = 0 when PFCEnable = 0. Or any one of following conditions is true:

1. PFCEnable = 0.
2. The PWM is disabled by the PFC voltage blanking (Vacpeak > VdcBus) function.
3. The PWM Command is less than the PFC Minimum pulse (PfcMinPulse).
4. AC input over or under voltage condition.
5. Motor or PFC fault is active.

The PFC_PWM_ON signal can be used in an MCE design or 8051 application code to enable,
disable or reset the PFC control loop regulators (voltage, current, etc.), as is done in the
reference design.

www.irf.com 93 UG 06/02/2014

5.1.5 Input and Output Registers of the PFC

PFC Voltage Loop control Write Registers:

PartialPFC_ON
Scaling or Notation: 1 = select partial PFC mode
 0 = select full PFC mode
Description: This parameter selects the PFC mode. Full PFC mode uses the Vdc_Ref

register as the PFC DC bus reference, while Partial PFC mode uses
(VAC_PEAK – VdcHyst). VAC_PEAK is updated every 100ms according to
VAC voltage feedback. Please see section 5.5 for full PFC and partial PFC
setup.

Vdc_Ref
Scaling or Notation: DC bus reference voltage = Vdc_Ref / DC bus feedback scaling
 Range: 0 – 4095,

 In IRMCS1043 hardware, DC bus feedback scaling = 8.27 cts/V
Description: This register provides DC bus voltage reference for full PFC mode when

PartialPFC_ON = 0. Please ensure that Vdc_Ref is higher than Vac Peak for
good PFC performance.

VdcHyst
Scaling or Notation: Voltage reference adjustment = VdcHyst / DC bus feedback scaling
 Range: -512 – 512

 In IRMCS1043 hardware, DC bus feedback scaling = 8.27 cts/V
Description: This register provides DC bus voltage reference adjustment for partial PFC

mode when PartialPFC_ON = 1. It is subtracted from the AC voltage peak
voltage to get the DC bus reference (a value of 10 – 20V is recommended).

Accel, Decel and PFC_RampScl
Scaling or Notation: Accdel and Decel Range: 0 – 32767
 PFC_RampScl Range: 0 – 31.
Description: The ramp rate of the PFC Voltage command to the target DC bus voltage is

controlled by these registers. Note that the ramp rate is also proportional to
the voltage loop execution rate (which is the motor PWM frequency).
MCEWizard100 configures these registers to set the Voltage ramp to
~900V/s. Do not change the value of PFC_RampScl while the PFC is
running because it can cause the voltage command to change abruptly.

KP_V, KI_V
Scaling or Notation: Range: 0 – 32767
Description: These registers set the PFC Voltage loop PI block proportional and integral

gains, respectively. MCEWizard100 calculates the values so that PFC
voltage loop have a BW of about 10Hz.

Limit_P_V
Scaling or Notation: Range: 0 – 4095
Description: This register limits the value of the PFC voltage PI output (VL_Out) before it

becomes the PFC current loop command. It depends on the MAX PFC
Power, Min AC voltage and the PFC current feedback scaling.

www.irf.com 94 UG 06/02/2014

PFC_ON_Motor_I
Scaling or Notation: Motor current threshold (A) = PFC_ON_Motor_I /10
Description: This register sets the Motor current threshold for PFC operation. The PFC

will turn on only when motor current is larger than this threshold. Some
applications may not need PFC at very low motor loads in order to reduce
the switching loss and noise. If it is set to 0 the PFC will run regardless of the
motor status.

PFC Voltage Loop control Read Registers:

VL_Out
Scaling or Notation: Range: 0 – Limit_P_V
Description: This register is the PFC voltage PI output, which is the current amplitude

reference for the PFC current loop.

PFC Voltage Loop Traceable Parameters:

VdcRef
Scaling or Notation: DC bus reference voltage = DC bus feedback scaling
Description: This parameter is the PFC voltage RAMP output, which is the real voltage

reference for the PFC voltage loop.

V_error
Scaling or Notation: Range: -4096 – 4095
Description: This parameter is the PFC voltage error, which is the difference between

Real_PfcDCRef and the DC bus feedback.

PFC_VL_out
Scaling or Notation: Range: 0 – Limit_P_V
Description: This parameter is the PFC voltage PI output, which is the current reference

for the PFC current loop and the same as read register VL_Out.

ACV, ACI, Motor_I, AC_Power
Scaling or Notation: AC input voltage (Vrms) = ACV
 AC input current (Arms) = ACI
 AC input Power (W) = AC_Power
 Motor phase current (Arms) = Motor_I / 10
Description: These parameters are outputs of PFC_MOTOR_MISC: AC voltage, AC

current, Power and motor current, respectively.

PFC Current Loop control Write Registers:

KP_I, KI_I
Scaling or Notation: Range: 0 - 32767
Description: These registers set the PFC current loop PI block proportional and integral

gains, respectively. MCEWizard100 configures the PFC current loop values
to give a BW of about 1.4KHz.

Limit_P_I
Scaling or Notation: Range: 0 – 16383

www.irf.com 95 UG 06/02/2014

Description: This register limits the value of PFC current PI output (PWM_Command
before it becomes the PFC PWM modulation.

FFD_SCALE, FFD_MULT, FFD_Limit_P, FFD_ADD
Description: These registers configure the PFC current loop feedforward block. The FFD

improves PFC performance by reducing the sensitivity to PFC current
sampling noise and the burden on the current loop. MCEWizard100
calculates the values based on the input of ―FFD_Gain‖.

PFC Current Loop Traceable Parameters:

I_ref
Scaling or Notation: Range: 0 – 4095
Description: This parameter is the real PFC Current Reference, which is the rescaled

product of PFC voltage loop PI input and instantaneous AC voltage.

I_error
Scaling or Notation: Range: -4096 – 4095
Description: This parameters is the PFC current error, which is the difference between

PFC Current reference and PFC current feedback.

PFC_CL_out
Scaling or Notation: Range: 0 – 16383
Description: This parameter is the PFC current loop PI output, which is added to the FFD

output to produce the PFC PWM command.

PWM_command
Scaling or Notation: Range: 0 – 65535
Description: This parameter is the PFC PWM command to PWM block.

www.irf.com 96 UG 06/02/2014

5.2 PFC Inductor Measurement

Similar to measuring the Motor Lq and Ld, the designer can measure the PFC inductance with an
LCR meter when using an inductor other than the one supplied with the IRMCS1043 Reference
Kit. However, measuring the correct PFC inductance is not straightforward because the result
can vary depending on the measurement condition. Table 3 gives an example of an iron-core
inductor measured at different voltages and frequencies.

Test Frequency 100Hz 1KHz 10KHz 20KHz 30Khz

0.1V test 3.76mH 3.69mH 2.5mH 1.91mH 1.30mH

1V test 3.89mH 3.79mH 2.53mH 1.96mH 1.31mH

Table 3—An Iron-core Inductor‘s Measured Value Varies with Test Condition

This effect is due to the nature of the magnetic core material. Eddy-current losses in an iron-core
will vary with voltage and frequency, influencing the measurement result. Based on the data
above, input an inductance value of 1.8 – 2mH in MCEWizard100 for 20KHz PFC operation.

To correctly measure the inductor value for the PFC application, follow the following procedure:

1. Begin by measuring the inductor with an LCR meter at 0.1V, 100Hz. Take 40% of this
value for an iron-core inductor, 60% for a ferrite inductor, and input it into MCEWizard100.

2. Use the resulting drive parameters to run the PFC at nominal power and AC input voltage,
setting the DC bus voltage slightly higher than the value to be used in the application.

3. Monitor the AC input voltage and inductor current on an oscilloscope, triggering near the
peak of the AC input voltage.

4. Measure the AC voltage and di/dt of the inductor current to calculate the inductor value.

The value calculated using this method depends on the phase of the AC voltage, so be sure to
trigger on the peak of the AC input voltage and then use the smallest value observed.
Figure 80 shows test results for a system run at a PWM frequency of 18kHz and input power of
1.5kW. The calculation below illustrates how the measured inductance varies with the
instantaneous input voltage.

mH
msA

V
di

dt
ULtest 47.2

/6.93

1
2321 

mH
msA

V
di

dt
ULtest 1.2

/150

1
3172 

With this measurement, input a value of 1.6 – 2.1mH into MCEWizard100 in order to provide
some design margin as required. A lower value makes the PFC current regulator less sensitive
to hardware noise, but the PFC performance may be reduced since then the real bandwidth of
the current regulator would be lower than 1.4KHz.

www.irf.com 97 UG 06/02/2014

a. Trigger at 232V b. Trigger at 317V

Figure 80—Iron-core Inductor di/dt Test at 1.5kW Input Power,18kHz PWM Frequency

5.3 Using PFC on the IR Reference Board
At the initial power-up, the IRMCS1043 Reference Design Kit is already loaded with an MCE
program that includes PFC control. Additionally, the MCEDesigner .irc file for the Reference Kit
has the correct parameters to configure the PFC for the supplied hardware.

5.3.1 Using the Wizard to Create the Configuration Parameters

MCEWizard100 already contains the correct input values for the Reference Design Kit hardware
selected on the Welcome Page. There are just a few parameters needed to configure the PFC
controller for the specific application. The regulation voltage for the boost PFC is set with the
Wizard parameter DC bus Voltage Reference. The System DC Bus section of questions also
sets the over- and under-voltage trip levels as well as the scaling for DC bus sensing. Also, set
the parameters in the PFC Application section of questions. These are all the PFC specific
parameters which should be set if the Reference Design Kit is not modified.

If the designer chooses to modify the hardware, or create a custom board, then MCEWizard100
can generate the configuration parameters for the new hardware. Be sure to select ―I have
modified the circuit board‖ on the Welcome page of MCEWizard100 to enable the hardware
dependent questions. See Section 5.3.6 for examples of simple modifications which can be
made to the Reference hardware.

As with the motor, configure the PFC and then start PFC in MCEDesigner. IRMCx100‘s PFC can
start any time after configuration, regardless of motor status, and it supports both full PFC and
partial PFC mode. Full PFC is the default mode. At light loads, the power factor will be low, but
will rise to > 0.9 by the time the output power exceeds 150W.

PFC PWM can be set up at first MCE configuration after power on, and updated at the end of
PWM Pre-charge step. The PFC PWM rate is not updated at any other time. In other words, the
PFC PWM rate can be changed by configuring MtrCtrlBits in Motor stop state, but the real PFC
frequency change only happens at motor start (updated at end of PWM Pre-charge step).

www.irf.com 98 UG 06/02/2014

5.3.2 Overcurrent Protection Circuit

The control IC includes an input pin to shut off the PFC switch in case of an over-current event.
In the Reference Design Kits, a PFC over-current situation is recognized, essentially, by
comparing the voltage across the PFC shunt resistor with a reference voltage; Figure 81 shows
the circuit from the IRMCS1088. The output of the comparator triggers the PFC gatekill fault in
the control IC.

In the event of a gatekill fault, the PFC PWM pin will be immediately changed to the off state by
hardware in the IRMCx188 IC.

Figure 81—PFC Gatekill Circuit

5.3.3 PFC Variable Scaling

Voltage Loop:
The DC bus voltages, Vdc_Ref and Vdc_AD, have the same scaling as defined in Section
2.2.3.4:

DC bus (V) = [Vdc_AD] / (A/D * r)
Where:
A/D is the analog-to-digital converter scaling (3412/Volt, 40951.2V)
r is the voltage divider ratio used in the voltage sense circuit

AC Voltage Feedback—There are two parameters in the MCE program which can be
traced—VAC, which is the rectified AC line voltage and VacVoltsFilt, which is the filted
VAC. The scaling is calculated similarly to the DC bus feedback:

AC Voltage = [VAC] / (A/D * k)
Where:
A/D is the analog-to-digital converter scaling (3412/Volt, 40951.2V)
k is the op-amp gain of the voltage sense circuit, In the sensing circuit show in
Figure 83, k = 4.87k / (4.87k*2 + 1.00M + 1.00M) = 2.423 x 10

-3
.

www.irf.com 99 UG 06/02/2014

Accel, Decel, and PFC_RampScl combine to set the voltage ramp rate as follows:

Voltage Setpoint Ramp Rate (V/s) = ([AccelRate] / 2^RampScaler) * PWM Freq / (A/D * r)
where
PWMFreq is the PWM switching frequency in Hz
A/D is the analog-to-digital converter scaling (3412/Volt, 40951.2V)
r is the voltage divider ratio used in the voltage sense circuit

Current Loop:
IPFC (PFC current feedback)

PFC Current (A) = IPFC / (Rshunt * k * A/D)
where
A/D is the analog-to-digital converter scaling (3412/Volt, 40951.2V)
k is the op-amp gain of the PFC current sense circuit
Rshunt is the PFC current feedback resistor in Ohms

I_REF (PFC current reference

PFC Current Reference (A) = I_REF / (Rshunt * k * A/D)
where
A/D is the analog-to-digital converter scaling (3412/Volt, 40951.2V)
k is the op-amp gain of the PFC current sense circuit
Rshunt is the PFC current feedback resistor in Ohms

PWM_Command (PFC PWM modulation): The modulation scaling is different than in the motors;
it is defined in terms of the PFCPWMPeriod register:

Modulation (%) = 100 * PWM_Command / 65535

5.3.4 Optimizing Starting and Running

The operation of the PFC switching can be understood by the waveforms of Figure 82. A PWM
SyncPulse occurs at regular intervals according to the motor PwmPeriodConfig register and the
PWM ratio between motor and PFC. The PFC PWM frequency can be set to 2, 3, 4 or 5 times
the motor PWM frequency, defined by MtrCtrlBits bits 6 – 8.

The SyncPulse initiates the execution of the PFC control loop, updating the PFC PWM Duty
Cycle Command. The duty cycle gets latched in at the next SyncPulse and then the latched
PWM_Command is compared to the PFC PWM carrier up counter. The PFC switch is turned on
when the PWM_Command is greater than the PFC PWM carrier. The inductor current is
sampled at the center of the PFC PWM pulse.

www.irf.com 100 UG 06/02/2014

Inductor current

Sampling instant

Sampling instant

Up counter Carrier

PFC PWM

Sync pulse

fsw1 fsw1 fsw1

PWM_Command

Figure 82—PFC PWM Cycle Timing

5.3.4.1 Varying Switching Frequency

The PFC PWM switching frequency is an important parameter in the design of PFC systems. A
higher switching frequency can allow for a lower PFC inductor value or for a reduction of the
current ripple at the expense of higher switching losses. A lower PFC frequency (for example
18kHz) allows the use of a low cost iron-core inductor; however, the PFC performance might also
be reduced. The trade-offs from increasing the PWM frequency are total system cost and
performance, increased heating of the PFC switch due to switching losses, and increased use of
the MCE processor resources. If you increase the PWM frequency be sure to check the MCE
usage on the ‗Options‘ page of MCEWizard100 and then create new drive parameters based on
the new frequency. Many gains will change with a change of PWM frequency. It is
recommended that the utilization not exceed 85% to ensure that none of the calculations are
missed; MCEWizard100 will give a warning if utilization exceeds 90%.

5.3.4.2 PFC Start-up/Voltage Ramp Rate

MCEWizard100 configures the system registers to set the voltage ramp to ~900V/s. See the
equation in Section 5.3.3 to calculate the ramp rate. Note that changing the switching frequency
or the voltage feedback gain will change the ramp rate. When increasing the ramp rate, verify
that the resulting input current during PFC start-up is not too large.

5.3.4.3 Voltage Loop Tuning

The voltage loop requires a much lower bandwidth than the current loop. The Reference Design
Kits automatically set the voltage loop bandwidth to ~10 Hz, but the optimal bandwidth depends
on the application requirements. For example, some situations may specify a high voltage ramp
rate with little or no overshoot. This may be achieved by increasing the integral gain (KI_V). This
will also reduced the voltage rise after a sudden drop in load power. However, increasing the
gain too much will reduce the damping (which can make the voltage regulator unstable) and
increase the third harmonic. It is up to the designer to verify that the voltage loop performance
meets the application requirements.

www.irf.com 101 UG 06/02/2014

5.3.4.4 Current Loop Tuning

In general, the bandwidth of the current loop should be as high as possible. However, there are
several factors which limit the achievable bandwidth, including the control delay from the current
sampling to the update in the modulation command or the amount of noise in the current and
voltage feedback signals. MCEWizard100 configures the current loop to have a bandwidth of
~1400 Hz, which is optimized for most applications.

A very simple way to adjust the PFC current loop bandwidth is to keep the same inductor while
changing the inductance value input into MCEWizard100. A higher value than the real
inductance will increase the real PFC current regulator bandwidth and vice versa. For a more
stable system, use the lowest bandwidth which meets the power factor requirement, particularly
when the IPFC feedback noise is significant.

5.3.5 Other PFC Features

There are several other features of the PFC which are available to the designer for improving the
PFC operation, reliability, and ability to handle short line disturbances. Please refer to the
IRMCx100 Reference Manual for information on PFC PWM Blanking and the PFC state machine.

5.3.6 Possible Hardware Modifications

This section describes several simple hardware modifications which the designer can do to adjust
or extend the capabilities of the Reference Kit to optimize it for the application. In each case, be
sure to generate new configuration parameters using MCEWizard100.

5.3.6.1 PFC Current Feedback Shunt Resistor

The IRMCS1043 Reference Design Kit has a 15mΩ shunt resistor for PFC current sensing.
Increasing the shunt resistor value will reduce the current range (for the same op-amp gain), but
increase the resolution. Always make sure that the shunt resistor is rated for the current and
power which will be dissipated in it.

Changing the PFC shunt resistor can change the range of currents which the hardware can
sense or change the GK current trip level. Note that another way to change the GK current trip
level is to modify the comparator voltage. In Figure 81, change R105 and R24 to set the voltage
at the inverting input to the comparator, or only change R48 to change the GK current trip level.

The Verify & Save page of MCEWizard100 displays the current at which the A/D converter
saturates. This is calculated based on the PFC shunt resistor value and the PFC current
feedback amplifier gain. It is important to keep the PFC drive current less than this value to keep
the currents in control. For example, if the IPFC input offset is set to 100mV (R34 and R46
divider get the input offset), the expected input signal range is 100mV~1100mV, the PFC shunt
resister is 15mΩ and op-amp gain is 4.1. The PFC instantaneous current should not exceed
1100mV/4.1/15mΩ = 17.89A or 12.6Arms to ensure PFC current is controlled.

5.3.6.2 PFC Current Feedback Amplifier Gain

Modifying the PFC current feedback gain is another way to change the range of current the
controller can sense. Figure 83 shows the PFC current sensing op-amp circuit in IRMCS1043.
The user can configure this gain as desired by changing the resistors of the input circuit to IPFC+,
IPFC- and IPFCO.

PFC Current Feedback Amplifier Gain = 8.2k / (1.00k + 1.00k) = 4.1

www.irf.com 102 UG 06/02/2014

Unlike IRMCx300‘s PFC current feedback circuit, A 50 – 100mV offset is added at the op-amp
circuit, so that the inductor current can be sensed at very low load conditions. The PFC current
op-amp has a higher gain and larger range, with input range of 50 – 100mV to 1.2V.

Figure 83. PFC Current Feedback and AC Voltage Feedback Circuit

In the same way as for motor current feedback, the gain of this circuit is 8.2.0 / (1.00 + 1.00) =
4.1. To modify the op-amp gain, the designer should change resistors in pairs (R92 & R93; R119
& R120).

5.3.6.3 AC Line Feedback Scaling

The AC voltage is sensed at the output of the rectifier bridge through an op-amp (VAC+, VAC-
and VACO). As an example, for the AC voltage feedback circuit shown in Figure 83, the value for
the AC Voltage feedback scaling is calculated as follows:

AC Line Feedback Scaling (cts/V) = (4.87k / (1.00M + 1.00M + 4.87k*2)) * 4095 / 1.2 = 8.27 cts/V
 (where the A/D gain is 4095cts/1.2V)

Be sure to change the PFC AC voltage feedback circuit together with DC bus voltage feedback
circuit if partial PFC mode is used. For partial PFC mode, the AC voltage scaling must be same
as the DC BUS voltage scaling because the DC bus reference is set by the AC peak voltage
every 100ms and the PFC firmware calculates the reference by assuming the AC voltage
feedback scaling is 100% of the DC bus feedback scaling. MCEWizard100 will display a warning
on the Verify & Save page if the hardware design does not satisfy the requirements for partial
PFC.

5.3.6.4 DC Bus Capacitor

The DC bus capacitor sizing can be determined by the hold-up requirements and ripple tolerance
of the application. MCEWizard100 estimates the DC bus ripple and provides a warning if the
ripple exceeds 20V. The voltage ripple can be calculated as follows:

www.irf.com 103 UG 06/02/2014

DCAC

ripple
VCf

P
V




4

Where:
Vripple is the peak-to-peak voltage ripple
fAC is the AC line frequency
C is the DC bus capacitance
VDC is the DC bus voltage
P is the input power

5.3.6.5 A/D Converter Offset Compensation

In power factor correction, the accuracy of the DC bus voltage feedback is important. The
designer can use one of the schemes described in Section 4.1.4 to compensate for any A/D
converter and reference voltage offset.

5.3.6.6 PFC Inductor

The inductor may be changed to a different value based on the application requirements. For
example, increasing the inductor value will reduce the PFC current ripple, while decreasing the
inductor will reduce the system cost. In order to ensure correct PFC operation, it is required that
the inductor value exceeds 20 / fPFC mH (fPFC is the PFC PWM frequency in kHz).

The inductor is easily changed by connecting the new inductor in place of the old one at the
connector (J2 in the IRMCS1043 Reference Kit). Be sure to generate new configuration
parameters using MCEWizard100. Note that the size of the inductor is not the only factor in
selection—for example, in some applications the saturation characteristics may be important,
especially when using iron-core inductors.

Remember that inputting a value lower than the real inductance into MCEWizard100 will
configure a reduced PFC current loop bandwidth, which stabilizes the system by filtering noise,
but may reduce the PFC performance.

For example, in the IRMCS1043 kit, 1.6mH is input into MCEWizard100 even though it includes a
2mH inductor. Changing the Wizard input to 3.2mH (and using the same inductor) will result in a
current loop bandwidth much higher than 1.4kHz, which may not be achievable at the PWM
frequency—the system may be unstable or PFC gate kill or audible noise occurs. On the other
hand, if 0.8mH is input to MCEWizard, the actual bandwidth will be much lower and the PFC
performance will be reduced.

www.irf.com 104 UG 06/02/2014

5.4 PFC Hardware Design

5.4.1 Schematic Elements

Section 5.3.6 gives some detailed schematic recommendations concerning the PFC current
feedback, VAC voltage feedback, DC capacitors, PFC inductor and over current protection
circuits. Those guidelines are also applicable to the user application board design. In each case,
be sure to generate new configuration parameters using MCEWizard100 if the design is different
from the IRMCS1043 Reference Design.

5.4.2 EMI Filter

The Reference Design Kits contain an EMI Filter which can be used as a starting point for the
filter required for the application. Figure 84 below shows the schematic of the EMI Filter in the
IRMCS1043. CX1 and CX2 act to filter the differential mode noise, while CY1 and CY2 filter the
common mode noise. Additionally, L1 acts as a common mode choke to attenuate the common
mode noise, while the leakage inductance of L1 also provides filtering of the differential mode
noise.

Figure 84—EMI Filter

However, additional Y-Caps should be placed between the PFC shunt resistor and the motor
drive inverter. These components will prevent common mode EMI current from flowing through
the PFC shunt resistor, reducing current feedback noise and increasing the achievable control
bandwidth. For an example, see CY3 and CY4 in the schematic of the IRMCS1043 Reference
Design Kit.

5.4.3 Layout Recommendations

Section 4.2 gives some detailed layout recommendations concerning the current feedback and
overcurrent protection circuits. Those guidelines are also applicable to the layout for the PFC
current feedback and over current protection.

5.5 PFC Starting and Optimizing
IRMCx100 supports both partial PFC and full PFC modes. Figure 85 shows the difference
between partial PFC and full mode PFC.

In Full PFC mode the PWM is active 100% of the time, which requires that the DC bus set point is
at least 5% higher than the AC peak voltage. An insufficient voltage gap between DC bus and
VAC voltage may reduce the PFC performance or even cause system instabilities. To operate

www.irf.com 105 UG 06/02/2014

PFC in full mode set the nominal DC bus higher than the peak AC peak voltage by at least 5%. In
each case, be sure to have enough voltage margin for the DC bus capacitor. Set register
PartialPFC_ON = 0 to select full PFC mode.

Partial PFC is a tradeoff solution between PFC performance and switching loss where the PWM
is only active part of the time (say 60 – 70% of the total grid cycle) mainly near the AC zero
crossing. The IRMCx100 automatically configures the DC bus set point 10~30V lower than the
AC peak voltage. A larger gap between AC peak voltage and DC bus set point results in lower
switching losses at the cost of lower PFC performance. Setting register PartialPFC_ON = 1 will
make the DC bus set point = VAC_PEAK – VdcHyst.

a. Vac & DC at Full PFC mode b. Vac & DC at partial PFC mode

c. IPFC & Vdc_blanking at Full PFC mode d. IPFC & Vdc_blanking at partial PFC mode

Full PFC mode: PF=1.000 Partial PFC mode: PF =0.988
(Vdc_Blanking=1 means Vac>Vdc and PWM is OFF)

Figure 85—Partial PFC Vs Full mode PFC

VdcHyst is an important register for partial PFC setup. It sets the gap between the peak AC
voltage and DC bus. A gap of 10 – 20V is recommended. This register has the same scaling as
Vdc_Ref.

The AC peak voltage (VacPeak) is generated by the IRMCx100 by filtering the AC voltage signal
and then extracting the peak voltage. The bandwidth of the low pass filter is ¼ of the motor PWM
frequency.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105

 http://www.irf.com Data and specifications subject to change without notice. 12/16/2011

Sales Offices, Agents and Distributors in Major Cities Throughout the World.

http://www.irf.com/

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2016 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this
document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal
injury.

Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

ifx1owners.

Edition 2014-02-06

IRMCx100_AppDevGuide

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	Application Developer’s Guide
	Table of Contents
	1 Introduction
	2 Target Motor on IR Reference Board
	2.1 Measuring the Motor Parameters
	2.2 Starting Motor Application-Specific Testing
	2.3 Optimizing Motor Starting and Running Parameters

	3 MCE Program Customization
	3.1 The Motion Control Engine
	3.2 IR Standard MCE Program
	3.3 Simulink MCE Design Components
	3.4 New MCE Design—Start to Finish
	3.5 Example Modifications

	4 Motor Application Hardware Design
	4.1 Schematic Elements
	4.2 Layout Recommendations
	4.3 Testing and Optimization

	5 PFC Application Development
	5.1 PFC MCE Program
	5.2 PFC Inductor Measurement
	5.3 Using PFC on the IR Reference Board
	5.4 PFC Hardware Design
	5.5 PFC Starting and Optimizing

