

© 2017 Avnet. All rights reserved. All trademarks and registered trademarks are the property of their
respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Avnet is providing this design, code, or information "as is." By providing the
design, code, or information as one possible implementation of this feature, application, or standard,
Avnet makes no representation that this implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Avnet expressly disclaims
any warranty whatsoever with respect to the adequacy of the implementation, including but not limited
to any warranties or representations that this implementation is free from claims of infringement and any
implied warranties of merchantability or fitness for a particular purpose.

FMC-MULTI-CAM4
reVISION 2018.2 Tutorial

Reference Design

Page 2

Introduction

The Avnet Multi-Camera FMC module supports up to four (4) high definition camera modules

using MAXIM Integrated’ s GMSL (Gigabit Multimedia Serial Link) technology.

GMSL is widely used in the automotive industry for in-vehicle high speed communication of

video streams. Making use of low-cost coax cable up to 15 meters in length, GMSL meets

the most stringent electromagnetic compatibility (EMC) requirements of the automotive

industry.

The provided linux-based reference designs support the ON Semiconductor MARS (Modular

Automotive Reference System) based camera modules, including the MAXIM Integrated

MAX96705 GMSL Serializer board and the ON Semiconductor AR0231AT image sensor board.

The AR0231AT image sensor is an automotive-grade image sensor which uses the latest 3.0

micron Back Side Illuminated (BSI) pixel with ON Semiconductor’s DR-Pix™ technology, which

offers dual conversion gain for improved performance under all lighting conditions. It includes

LED Flicker Mitigation (LFM), and achieves 120dB of High-Dynamic Range with 4-exposure

HDR.

The Multi-Camera FMC Module is available in two options:

- FMC module only (without any cable or cameras)

- Quad AR0231AT Camera FMC bundle (including cable and four cameras)

The Quad AR0231AT Camera FMC Bundle includes the Multi-Camera FMC module, a cable

assembly, as well as four AR0231AT camera modules with GMSL serialization.

The Quad AR0231AT Camera FMC Bundle is meant to be used with Xilinx Zynq-UltraScale+

FMC carriers, including the ZCU102, the ZCU104, as well as the Avnet UltraZed EV SOM +

Carrier. The Quad Camera FMC Bundle is fully integrated to the Xilinx reVISION stack,

including SDSoC platforms and design examples.

Page 3

Overview
This tutorial integrates the Multi-Camera FMC into the reVISION stack by providing an SDSoC platform

for various Zynq-UltraScale+ MPSoC based FMC carriers. The reVISION / SDSoC platform provides a
feature rich framework for the development of video applications on the Xilinx Zynq UltraScale+
MPSOC. It is based on the original reVISION platform from Xilinx, which provides the following
infrastructure:

• video sources (or capture pipelines)

• computer vision accelerators implemented as memory-to-memory (m2m) pipelines

• video sinks (or output/display pipelines)

The following documentation should be consulted for more detailed information on the original
Xilinx reVISION platform:
 https://github.com/Xilinx/Revision-Getting-Started-Guide

The original reVISION platform was modified to remove single sensor capture pipeline, and replaced
with the quad camera capture pipelines.

The following figure illustrates the simplified block diagram for the SDSoC platform.

NOTE : The HDMI capture pipeline is only included in the ZCU102 platform, and excluded from the
ZCU104 platform to save resources.

Objectives
This tutorial will guide the user how to:

• Execute a SDSoC sample on hardware

• Rebuild a SDSoC sample design

https://github.com/Xilinx/Revision-Getting-Started-Guide

Page 4

SDSoC Samples

File I/O

These are the simplest design examples. Typically they will read a frame of video from a standard image
file using a standard OpenCV call (such as cv::imread()), process that frame with a call to an xfopencv
function, and output the result to a file, (e.g., using cv::imwrite()). They illustrate use of five different
xfopencv HW accelerated versions of popular OpenCV functions.

• Bilateral Filter

• Harris Filter

• Dense Optical Flow

• Stereo Vision (Depth Detection)

• Warp Transformation

Live I/O

These examples input and output live video.

• Dense Optical Flow - requires Multi-Camera FMC Module + AR0231AT camera modules

o This algorithm uses two successive images in time, and calculates the direction and
magnitude of motion at every pixel position in the image. The calculation is a simple
implementation of the Lucas–Kanade method for optical flow estimation. The optical
flow algorithm returns two signed numbers at each pixel position, representing up or
down motion in the vertical direction, and left or right motion in the horizontal
direction. The brightness of the false-color output, from black up to bright color,
indicates the magnitude of the motion, and the color indicates the direction.

• Filter2D - - requires Multi-Camera FMC Module + AR0231AT camera modules

o Convolution is a common image processing technique that changes the intensity of a
pixel to reflect the intensities of the surrounding pixels. This is widely used in image
filters to achieve popular image effects like blur, sharpen, and edge detection. The
implemented algorithm uses a 3x3 kernel with programmable filter coefficients.

Page 5

Quad Camera Capture Pipelines
The following block diagram illustrates the full quad camera capture pipelines included in this reVISION /
SDSoC platform.

The image pipeline for each of the four camera capture pipelines is illustrated in the following block
diagram.

NOTE : The Scaler has been excluded in this version of the ZCU102 and ZCU104 platforms to save
resources.

Valid licenses (hardware evaluation, or full license) are required for the following video IP cores:

• Demosaic (Color Filter Array Interpolation)

• Video Processing Sub-System, including:
o RGB to YcrCb Color-Space Converter
o Chroma Resampler
o Scaler

• Frame Buffer Write

Page 6

Experiment Setup
The following sections describe the software and hardware requirements for this tutorial.

Software
The software required to build, and execute the reference design is:

• Linux or Windows host machine with a minimum memory of 32GB

• Terminal Emulator (HyperTerminal or TeraTerm)

• Xilinx SDSoC 2018.2

Hardware
The hardware required to build, and execute the reference design is:

• One of the following supported FMC carriers:

o ZCU102

o ZCU104

• Quad AR0231AT Camera FMC Bundle, including:

o AES-FMC-MULTICAM4-G FMC module

o Quad-HFM to 4x FAKRA Cable Assembly

o 4 camera modules. Each composed of:

▪ MAX96705 Serializer Kit (MARS1-MAX96705-GEVK)

▪ AR0231AT Image Sensor Board (MARS1-AR0231AT7-GEVB)

• Monitor with HDMI input supporting one of the following resolutions:

o 3840x2160 or

o 1920x1080

Page 7

Experiment 1: Extract the design files
In this section, the design files for the reVISION platform, including pre-built examples, will be extracted
to your computer.

1. Download one of the following reVISION platform archives, depending on which Zynq-UltraScale+
carrier you are using.

ZCU102:
zcu102-rv-mc4-2018-2-20180828.zip
https://avtinc.sharepoint.com/:u:/t/ET-Downloads/EZr0t89EN9lDuJd8jXgYJIkBRkTYfh2R4x2OtcfjucTrjA

MD5 SUM Value : 8e3c9ae70d5207f6373bdc170b851959

ZCU104:
zcu104-rv-mc4-2018-2-20180828.zip
https://avtinc.sharepoint.com/:u:/t/ET-Downloads/ERm03RSrZXNOviqUxgdzh3QBRwDtNTzInuY88JMmSr4jGg

MD5 SUM Value : 18e04af5477ef036c73e5fa77d0c841f

2. Click on the download link, then press the “Download” button on the top of the page.

https://avtinc.sharepoint.com/:u:/t/ET-Downloads/EZr0t89EN9lDuJd8jXgYJIkBRkTYfh2R4x2OtcfjucTrjA
https://avtinc.sharepoint.com/:u:/t/ET-Downloads/ERm03RSrZXNOviqUxgdzh3QBRwDtNTzInuY88JMmSr4jGg

Page 8

3. Extract the reVISION platform archive to your computer

a. For Linux, use the unzip utlity.
b. For Win dows, make sure that the reference design zip file is unzipped in a directory path

which contains no spaces. Use the 7zip utility and follow the steps below. If you need 7zip,
get it here

7zip

4. Once the reference design zip file is unzipped, navigate to the petalinux directory and unzip the
file sdk.zip which contains the sysroot.

c. When prompted to confirm file replace, select ‘Auto Rename’ (Windows only)

http://www.7-zip.org/

Page 9

Once extracted, you will have a {target}-rv-mc4-2018-2 directory, where {target} will be one of either
zcu102 or zcu104. This directory will contain the following sub-directories:

Sub-directory Content Description

sd_card contains pre-built SD card images that enable the user to run the live I/O
example applications on the ZCU10x board.

{target}_rv_mc4 SDSoC platform for ZCU102 or ZCU104

 hw contains the .dsa file describing the hardware platform.

 sw contains software - bootloaders and other code and support files for the
processors on the ZCU10x target board.

 samples contains sample app code. Each sample directory has a .json file describing
the build process. These are the SDx sample apps that appear in the
"Template" dialog when creating a new project using the reVISION platform.

 file_IO projects are self-contained

 live_IO projects are more complex, and are built in several steps

petalinux contains a petalinux bsp with device tree info, hardware description files,
and other system setup files. An advanced user has the option of creating
their own platform. A sysroot is included as zip file.

workspaces contains a workspace directory structure you may use to build the live_IO
samples

Page 10

Experiment 2: Running the pre-built designs
The following live I/O designs have been pre-built and are ready to run on hardware:

• Filter 2D

• Optical Flow

• Filter 2D + Optical Flow

Setup the ZCU102 or ZCU104 hardware as follows:

1. Connect the FMC-MULTICAM4 FMC module to the FMC connector (J5 for HPC0 FMC on ZCU102,
J5 for LPC FMC on ZCU104)

2. Attach the four AR0231AT camera modules to their respective MAX96705 Serializer modules,
and connect to the FMC-MULTICAM4 FMC module with the cable assembly

3. Connect the power supply to the 12V connector (J52 on ZCU102, J52 on ZCU104)
4. Connect the HDMI display with an HDMI cable to the top connector of dual HDMI connector (P7

on ZCU102, P7 on ZCU104)
5. Connect a micro-USB cable to the USB-UART connector (J83 on ZCU102, J164 on ZCU104)

Use the following settings for your terminal emulator:

• Baud Rate: 115200

• Data: 8 bit

• Parity: None

• Stop: 1 bit

• Flow Control: None
6. Insert SD card (FAT formatted) with pre-built image copied from one of the following

directories:

• Filter 2D : sd_card/filter2d

• Optical Flow : sd_card/opticalflow

• Filter 2D + Optical Flow : sd_card/filter2d_optflow
7. Set boot mode to SD card

• ZCU102 : SW6[4:1]: off,off,off, on

• ZCU104 : SW6[4:1]: off,off,off, on
8. Turn on the power switch (SW1 on ZCU102, SW1 on ZCU104)

Page 11

Once linux has finished booting, you should see the linux prompt on the serial console:

…

Setting console loglevel to 0 ...

root@xilinx:~# cd /media/card

root@xilinx:/media/card# ./gstfilter2d_optflow.sh

9. Change the active directory to the sd card with the following command : cd /media/card
10. Execute the design with the following command : ./gstfilter2d_optflow.sh

You should observe the live captures from the four cameras on the 4K monitor.

• the top-left quadrant is running the “Optical Flow” accelerator, indicating movement in the scene

• the bottom-right quadrant is running the “Filter 2D” accelerator, enhancing the edges in the scene

• the other two quadrants are running a passthrough

Optical Flow

Filter 2D

Page 12

Experiment 3: Modifying the GStreamer Pipelines

This version of the reVISION platforms make use of the GStreamer framework. The sample design
examples are built as GStreamer plugins.

An application (gstdemo) is also included with each sample design to exercise the sample plugins.

As you will see in the next sections, the sample design examples consist of a multi-project workspace, as
shown in the following figure.

An alternate method of launching the GStreamer pipelines is to use the gstlaunch-1.0 utility, which is
what was used in the previous experiment. The advantage of this method, is that it allows the user to
quickly modify and experiment with the GStreamer pipelines.

accelerator1

GStreamer
plug-in

accelerator2

GStreamer
plug-in

SDSoC project (library)

 accelerator1 accelerator2

GStreamer application
(gstdemo or gstlaunch-1.0)

Page 13

Make a copy of the gstfilter2d_optflow.sh script, and edit the file with your favorite editor.

…

gst-launch-1.0 \

 v4l2src device=/dev/video2 io-mode="dmabuf" ! \

 "video/x-raw, width=${w}, height=${h}, format=${fmt}, framerate=${framerate}" ! \

 ${accel2} filter-mode=${accel2_mode} ! \

 queue ! \

 kmssink plane-id=29 bus-id=${bus_id} render-rectangle="<0,0,${qw},${qh}>" \

 \

 v4l2src device=/dev/video3 io-mode="dmabuf" ! \

 "video/x-raw, width=${w}, height=${h}, format=${fmt}, framerate=${framerate}" ! \

 kmssink plane-id=30 bus-id=${bus_id} render-rectangle="<${qw},0,${qw},${qh}>" \

 \

 v4l2src device=/dev/video4 io-mode="dmabuf" ! \

 "video/x-raw, width=${w}, height=${h}, format=${fmt}, framerate=${framerate}" ! \

 kmssink plane-id=31 bus-id=${bus_id} render-rectangle="<0,${qh},${qw},${qh}>" \

 \

 v4l2src device=/dev/video5 io-mode="dmabuf" ! \

 "video/x-raw, width=${w}, height=${h}, format=${fmt}, framerate=${framerate}" ! \

 ${accel1} filter-mode=${accel1_mode} filter-preset=${accel1_filter} ! \

 queue ! \

 kmssink plane-id=32 bus-id=${bus_id} render-rectangle="<${qw},${qh},${qw},${qh}>" \

 -v

If we take a closer look at the first pipeline, we can see that the video source is defined as a V4L2 video
source, where the “/dev/video2” device identifies the first camera of the multi-camera FMC module.

v4l2src device=/dev/video2 io-mode="dmabuf" ! \
"video/x-raw, width=${w}, height=${h}, format=${fmt}, framerate=${framerate}" ! \

The pipeline includes a video processing function, implemented by one of our GStreamer plug-ins, and
defined as follows:

${accel2} filter-mode=${accel2_mode} ! \
 queue ! \

The output of the pipeline is defined as one of the planes of the HDMI output display controller, defined
as:

kmssink plane-id=29 bus-id=${bus_id} render-rectangle="<0,0,${qw},${qh}>" \

Note that the render-rectangle property defines where on the monitor, the content will be displayed. In
this case, the top-left quadrant is defined.

Page 14

Modify the GStreamer pipelines, and re-run on hardware to experiment with the GStreamer
infrastructure.

As an example, In the following example, the optical flow accelerator (accel2) was moved from camera 1
to camera 2 pipeline.

…

gst-launch-1.0 \

 v4l2src device=/dev/video2 io-mode="dmabuf" ! \

 "video/x-raw, width=${w}, height=${h}, format=${fmt}, framerate=${framerate}" ! \

 kmssink plane-id=29 bus-id=${bus_id} render-rectangle="<0,0,${qw},${qh}>" \

 \

 v4l2src device=/dev/video3 io-mode="dmabuf" ! \

 "video/x-raw, width=${w}, height=${h}, format=${fmt}, framerate=${framerate}" ! \

 ${accel2} filter-mode=${accel2_mode} ! \

 queue ! \

 kmssink plane-id=30 bus-id=${bus_id} render-rectangle="<${qw},0,${qw},${qh}>" \

 \

 v4l2src device=/dev/video4 io-mode="dmabuf" ! \

 "video/x-raw, width=${w}, height=${h}, format=${fmt}, framerate=${framerate}" ! \

 kmssink plane-id=31 bus-id=${bus_id} render-rectangle="<0,${qh},${qw},${qh}>" \

 \

 v4l2src device=/dev/video5 io-mode="dmabuf" ! \

 "video/x-raw, width=${w}, height=${h}, format=${fmt}, framerate=${framerate}" ! \

 ${accel1} filter-mode=${accel1_mode} filter-preset=${accel1_filter} ! \

 queue ! \

 kmssink plane-id=32 bus-id=${bus_id} render-rectangle="<${qw},${qh},${qw},${qh}>" \

 -v

Page 15

Experiment 4: Licensing
The remaining of the experiments will require a valid Xilinx SDSoC license, which also includes the
licenses for the video IP cores that are used in this reference design.

The following steps to generate a proper SDSoC license:

1. Log in here with your work E-mail address (If you do not yet have an account, follow the steps
under Create Account)

2. Generate a license from “Create New Licenses” by checking "SDSoC Environment, 60 Day
Evaluation License"

3. Under system information, give the host details.
4. Proceed until you get the license agreement and accept it.
5. The License (.lic file) will be sent to the email-id mentioned in the login details.
6. Copy the license file locally and give the same path in the SDSoC license manager.

http://www.xilinx.com/getproduct

Page 16

Experiment 5: Re-Build the Sample Design
Before starting SDSoC, the SYSROOT environment variable must be configured to point to a directory
inside the platform. The platform root directory is abbreviated and needs to be replaced with your exact
local path : <platform>/petalinux/sdk/sysroots/aarch64-xilinx-linux

1. Under Linux:

• export SYSROOT=<platform>/petalinux/sdk/sysroots/aarch64-xilinx-linux
2. Under Windows:

• Start->Control Panel->System->Advanced System Settings->Advanced->Environment
Variables

• Create environment variable SYSROOT with value
<platform>/petalinux/sdk/sysroots/aarch64-xilinx-linux

The platform ships with five file IO and two live IO design examples demonstrating popular OpenCV
functions accelerated on the programmable logic. A third live I/O example shows how to combine the
other two live I/O designs into one design, allowing the two accelerated functions to reside and run in
parallel in the FPGA.

The live IO sample design examples are based on GStreamer. See GStreamer The open source
GStreamer framework code is included with the reVISION platform, and design examples are built as
GStreamer plugins. Pipelines may be run using the gst-launch-1.0 utility.

The three workspace names <ws_name> are ws_f2d, ws_of, and ws_f2dof.
The three sample names <name> are filter2d, opticalflow, and filter2d_optflow.

A GStreamer plugin is a shared library. In the case of the reVISION sample designs, the GStreamer plugin
consists of two linked parts. These "top" and "bottom" parts are separate shared libraries produced by
separate project builds. The top part is the GStreamer plugin itself, containing the code for interfacing
with the GStreamer framework. See the ./workspaces/<ws_name>/gst/plugins/<name>

directory. The top part links with the bottom part which contains the code for the HW accelerated
function(s). This bottom project generates the BOOT.BIN file containing the programmable logic used for
the HW function(s). These are SDx projects: See the ./samples/live_IO/<name> directory.

3. Make a copy of the ./workspaces/ws_f2dof/ workspace to another location on your
hardware drive

NOTE : If you are working on Windows there is a restriction, i.e. file path lengths are restricted to 256
characters. The Xilinx build process creates some very deep directory structures with long names as it
goes through the build process. You are advised, therefore, to keep the path to the workspace as short as
possible. E.g. C:\ws_f2dof\...

https://gstreamer.freedesktop.org/

Page 17

4. Start SDx and select your copy of the workspace ./ws_f2dof.

Make sure you use the same shell to run SDx as the one where you have set $SYSROOT
Click ‘OK’

5. Close the Welcome screen and
select 'File'→'Import'→'General'→'Existing Projects into Workspace'→'Next'.

Page 18

6. In the Import dialog, to the right of 'Select root directory', click 'Browse'.

Page 19

7. In the ‘Browse for Folder’ dialog, select your copy of the ws_f2dof workspace, then click 'OK'.

Page 20

8. You should see a list of projects, with gstdemo, gstsdxallocator, gstsdxbase, gstsdxfilter2d and
gstsdxopticalflow selected, click 'Finish'.

Page 21

9. Back at the main window, the four imported projects appear in the Project Explorer pane.
Now select 'File'→'New'→'SDx Project'... from the menu bar.

10. This brings up the Project Type dialog box, with Application Project selected, click 'Next'.

Page 22

11. In the 'Create a New SDx Project' dialog, enter Project name 'filter2d_optflow', click 'Next'.

NOTE : The ‘project name’ is important, since the other gstreamer projects refer to this project by name
for include directories and library directories. If you choose to specify a different name, you will need to
change these directory references in the gstreamer projects.
 The required ‘project name’ for the Filter 2D sample is filter2d.

 The required ‘project name’ for the Optical Flow sample is opticalflow.

 The required ‘project name’ for the Filter 2D + Optical Flow sample is filter2d_optflow.

Page 23

12. In the Platform dialog, click 'Add Custom Platform', find your way to the top directory where you
unzipped the reVISION platform, called zcu102_rv_mc4 or zcu104_rv_mc4.
Click 'OK'.

Page 24

13. Back in the Platform dialog, the new platform appears in the list, but is not selected. Select it,
then click 'Next'.

Page 25

14. In the System configuration dialog, under Output type, select 'Shared Library', click 'Next'.

Page 26

15. In the Templates dialog, under live_IO select ‘Filter 2D and Optical Flow’ and click 'Finish'.

16. Back again at the main window, the new project 'filter2d_optflow' appears with the five
imported projects in the Project Explorer pane.

Page 27

17. Switch the 'Active Build Configuration' for the opticalflow project to Release. Note that three
routines are marked as Hardware Functions.

Page 28

18. Build the filter2d_optflow project - do this by clicking right and choosing Build Project, or by
clicking the 'hammer' icon.

In the small Build Project dialog that opens, you may hit the "Run in Background" button. That causes
the small dialog box to disappear, though you can still see a progress icon in the lower right part of the
GUI, showing that work is in progress. Select the Console tab in the lower central pane of the GUI to
observe the steps of the build process as it progresses. The build process may take tens of minutes, up
to several hours, depending on the power of your host machine, whether you are running on Linux or
Windows, and of course the complexity of your design. By far the most time is spent processing the
routines that have been tagged for realization in hardware - note the "HW functions" window in the
lower part of the SDx Project Settings pane.
In our example above, the routines read_optflow_input, DenseNonPyrLKOpticalFlow,
write_optflow_output, read_f2d_input, filter2D, and write_f2d_output are tagged
to be built in hardware. The synthesis of the C code found in these routines into RTL, and the Placement
and Routing of that RTL into the programmable logic in the Zynq MPSoC, are the steps that take most of
the time.

Page 29

Once the Build completes, you will find an sd_card directory has been created containing these files
you'll need to transfer to your SD card.

19. In order to prepare the SD card for newly built content, start by creating the following two
directories on the sdcard

• <sdcard>/lib

• <sdcard>/gstreamer-1.0

20. Copy the following files to the SD card

Files to copy to SD card Destination on SD card

./ws_f2dof/filter2d_optflow/Release/sd_card/BOOT.BIN <sdcard>/

./ws_ f2dof/filter2d_optflow/Release/sd_card/libfilter2d_optflow.so <sdcard>/lib/

./ws_ f2dof/filter2d_optflow/Release/sd_card/image.ub <sdcard>/

./ws_ f2dof/filter2d_optflow/Release/sd_card/video_cmd <sdcard>/

21. Now that the "bottom" shared library is built, you may build the "top" part, that will be linked
with the bottom library. Now select the gstdemo project, and build it. Doing this will build all
four of the gst--- projects.

This entire process should take only a few minutes.

Page 30

22. Copy the following files to the SD card

Files to copy to SD card Destination on SD card

./ws_f2dof/gst/allocators/Debug/libgstsdxallocator.so <sdcard>/lib/

./ws_f2dof/gst/base/Debug/libgstsdxbase.so <sdcard>/lib/

./ws_f2dof/gst/plugins/filter2d/Debug/libgstsdxfilter2d.so <sdcard>/gstreamer-1.0/

./ws_f2dof/gst/plugins/optical_flow/Debug/libgstsdxopticalflow.so <sdcard>/gstreamer-1.0/

Also, there are additional scripts that are needed to launch the gst-launch-1.0 utility.

23. Copy the following files to the SD card

Files to copy to SD card Destination on SD card

./ws_f2dof/scripts/gstpass.sh <sdcard>/

./ws_f2dof/scripts/gstfilter2d_optflow.sh <sdcard>/

Finally, the gstdemo application, which is an example of how to directly call the GStreamer API can also
be copied to the SD card.

24. Copy the following files to the SD card

Files to copy to SD card Destination on SD card

./ws_f2dof/gst/apps/filter2d_optflow/gstf2dofdemo.sh <sdcard>/

./ws_f2dof/gst/apps/filter2d_optflow/Debug/gstdemo <sdcard>/

Now that you have re-built the SD card image for the filter2d_optflow sample, refer to Experiment 2:
Running the pre-built designs for instructions on running the design on hardware.

Page 31

Known Issues & Limitations
The following list enumerates the known issues and limitations with this reVISION platform

• only four camera configuration is supported
o single camera configuration is not supported
o dual camera configuration is not supported

• HDMI input is not supported with this reVISION platform

Page 32

Appendix I: Getting Support

Avnet Support
• Technical support is offered online through the ultrazed.org website

support forums. Avnet dev kit users are encouraged to participate in the
forums and offer help to others when possible.
http://ultrazed.org/forums/zed-english-forum
http://ultrazed.org/forums/software-application-development

• For questions regarding the community website, please direct questions
to the ultrazed.org Web Master (webmaster@ultrazed.org).

• To access the most current collateral for the Avnet dev kits, visit the community support page
(www.ultrazed.org/content/support) and click one of the icons shown below:

http://www.ultrazed.org/
http://ultrazed.org/forums/zed-english-forum
http://ultrazed.org/forums/software-application-development
mailto:webmaster@ultrazed.org
http://www.ultrazed.org/content/support

Page 33

Xilinx Support
For questions regarding products within the Product Entitlement Account, send an email message
to the Customer Service Representative in your region:

• Canada, USA and South America - isscs_cases@xilinx.com

• Europe, Middle East, and Africa - eucases@xilinx.com

• Asia Pacific including Japan - apaccase@xilinx.com

For technical support, including the installation and use of the product license file, contact Xilinx Online
Technical Support at www.xilinx.com/support. The following assistance resources are also available on
the website:

• Software, IP and documentation updates

• Access to technical support Web tools

• Searchable answer database with over 4,000 solutions

• User forums

http://www.xilinx.com/support

Page 34

Revision History
Date Version Revision

27 Aug 2018 2018.2.01 Initial Release
28 Aug 2018 2018.2.02 Change instructions from opticalflow to filter2d_optflow

Add section on modifying the GStreamer pipelines

08 Nov 2018 2018.2.03 Change download links

