Ultra-Reliable MPC574xP MCU (Panther) for Automotive & Industrial Safety Applications
Industrial Automation Market Trends

Market Trends

- **Increased connectivity** / Data sharing in order to:
 - Reduce energy consumption
 - Increase response time/system control
 - Reduce down-time
 - High Growth regions driving low cost products
 - Consumer technology adoption for Multi touch and portable display

- Increase **safety and security**
 (Machine safety mandatory in many industrial regions e.g. EU)

Implications for NXP

- Increase of **Industrial Ethernet** networks gaining share over fieldbus
- Intelligent motor control to improve **energy efficiency**
- **Industry 4.0**: connected nodes in the smart factory
- Advanced **HMI** solutions

- **NXP SafeAssure™** support for industrial markets
MPC574xP Introduction

Key Technical Characteristics

► Multi-core architecture (2x e200z4 up to 200MHz) with local memory (64KB)
► Scalable Embedded Flash (up to 2.5MB) with EE emulation (up to 384KB SRAM)
► **Delayed lock-step architecture**, duplicated periphery, LBIST / MBIST, ADC self test & FCCU for highest safety integrity level (ASIL D, SIL 4 or PL e)
► **Developed according to the ISO 26262** automotive safety norm (derived from generic IEC 61508)
► Option for **extended temperature** up to 165°C Tj

Integration and Peripherals

► Maximum **compatibility to previous NXP safety generation** (MPC5643L)
► **Supporting up to 2 motors**
► Inter-processor high speed serial I/F (SIPI)
► SENT I/F for Chassis applications
► **Ethernet** (in BGA package), LIN, CAN & Flexray I/F options
► 4x multi-chip DSPI for ASIC communication

Target Applications

► **Safety Critical Domain / Gateway Control** e.g.
 ► Industrial Automation
 ► Building Control
 ► Braking & Stability
 ► DCDC Converter
 ► Medical

Packages

► 144LQFP
► 257MAPBGA
Ultra Reliable & Safe Automotive MCUs

Roadmap

<table>
<thead>
<tr>
<th>Performance</th>
<th>Precision</th>
<th>Safety</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>512K - 1.5M</td>
<td>2 - 2.5M</td>
<td>3 - 4M</td>
<td>6 - 8M</td>
</tr>
</tbody>
</table>

- **MPC5643L**
 - 2 x 200MHz, PWM

- **MPC567xK**
 - 2 x 200MHz, SPE, Enet, PWM

- **MPC5746R**
 - 2 x 200MHz, eTPU2+

- **MPC574xP**
 - 2 x 200MHz, 1M-2.5M, PWM, Enet

- **MPC5777M**
 - 2 x 300MHz + 200MHz, GTM, Enet, Flexray

- **MPC5777C**
 - 2 x 264MHz, eTPU2, CANFD, Enet

- **CMOS55**
 - 250 to 300MHz
 - 160 to 200MHz
 - 100 to 150MHz
 - 64 to 80MHz

- **CMOS90**

- **Safety Level (ISO 26262 / IEC 61508)**
 - ASIL D / SIL 3
MPC574xP Family

<table>
<thead>
<tr>
<th>Features</th>
<th>MPC5741P</th>
<th>MPC5742P</th>
<th>MPC5743P</th>
<th>MPC5744P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash w ECC</td>
<td>1MB</td>
<td>1.5MB</td>
<td>2MB</td>
<td>2.5MB</td>
</tr>
<tr>
<td>Core Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x e200z4 in delayed lock step, up to 200MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core bus with 32-bit address, 64-bit data and e2eECC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local memory data (64kB RAM) with with System MPU for fast context switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRAM w ECC</td>
<td>128KB</td>
<td>192KB</td>
<td>256KB</td>
<td>384KB</td>
</tr>
<tr>
<td>Safety Integrity Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targeting for ASIL D (ISO 26262) / SIL 3 (IEC 61508) / PL e (ISO 13849)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I / O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3x FlexCAN (64+2x32 message buffers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x FlexRay (Dual Channel 64 msg. buffers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x LINFlex (Uart/Lin protocol driver)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4x DSPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x FlexPWM (2 x 12ch for 2 independent Motors Controlled)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3x eTimer modules (18 channel total)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4x SAR ADC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x SENT (2 ch each)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet (available in MAPBGA package option)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe DMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual-PLL (Peripheral + System Core)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Collection unit (FCCU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC computing unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurora Nexus debug interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interprocessor Serial Link Interface (SIPI) with approx 300Mbaud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 135°C / 165°C (ambient / junction)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported Packages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144 LQFP (0.5 mm pitch) / 257 MAPBGA (0.8 mm pitch)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MPC574xP Safety Features

More details in MPC5744P Safety Manual
MPC574xP Enablement

S32 Design Studio IDE – Free open source environment for a quick SW development
- GNU Compiler Collection
- GNU Debugger

AUTOSAR MCAL Software support

Additional Compilers
- Green Hills – Multi Integrated Development Environment
- Wind River

Additional Debuggers
- Lauterbach
- Green Hills
- iSystem
- Cosmic Software

HW Development Boards
- MPC57XXXMB (Motherboard) - available
- Daughter Boards
 - MPC5744P-144DS (144 LQFP Socket) - available
 - MPC5744P-257DS (257 MAPBGA Socket) - available

Umbrella Sample Availability
- SPC5744PFK1AMLQ9 (144LQFP package) - available
- SPC5744PGK1AMMM9 (257MAPBGA package) – available in MAY 2016
MPC574xP Summary

► The automotive and industrial industries with its **Industrie4.0 trend (smart & safe factory)** as well as the need for **safe gateway controller in cars** to pave the way for autonomous driving **are increasingly requiring functional safety solutions**

► With the SafeAssure™ Automotive MCUs, NXP implemented a systematic approach to **functional safety that reduces complexity** for manufacturers of functional safety systems

 ► **Reduced BOM cost** and **simplified Software development** by creating a redundancy concept based on one single MCU only

► **Key Features**

 ► Enables highest level of functional safety (ASIL D / SIL 3)
 ► Powerful Multicore, Power Architecture 200MHz z4 cores
 ► Range of memory and package options for your every application
 ► Industry standard I/F incl. Ethernet
 ► Robust automotive qualified product with extended temperature range (up to 165°C Tj)

► **The NXP SafeAssure™ program with its partners support functional safety solutions** on system level till final certification
Origin of Typical Permanent & Transient MCU Failures

- **70% SRAM Failures (transient)**
 - Alpha radiation from the MCU mold compound
 - Cosmic radiation (20 - 25,000 neutrons per hr & cm²)

- **20% Transistor Failures (transient)**
 - Transistor aging (Time dependent dielectric break down or exceeding transistor gate oxide lifetime)

- **8% Package Failures (permanent)**
 - Wire bond integrity
 - Design Rules

- **2% Die Failures (permanent)**
 - Mask set
 - Limited test coverage during SW- & HW-development
Random Failures & Countermeasures using MPC574xP

Single Point of Failure (SPOF)
Immediate potential to cause a hazard

Latent Failure (LF)
Can aggregate and become dangerous in conjunction with a second fault

Common Cause Failure (CCF)
Causes several components to fail & possibly annul redundancy-based measures

- **Single Point of Failure (SPOF)**
 - Input
 - Component
 - Output

- **Latent Failure (LF)**
 - Input
 - LF Component
 - Output

- **Common Cause Failure (CCF)**
 - Component
 - Output

NXP-Solution
- Structural redundancy (replication of Core & DMA)
- Information redundancy (E2E ECC for Memory and Internal Bus Transfers, EDC on Cache)

NXP-Solution
- Periodic self test
 - Memory & logic (< 50ms)
 - ADC, register configuration
 - Startup and shutdown LBIST

NXP-Solution
- Measures according to IEC 61508
 - Delayed Checker Core
 - Continuous Monitoring of clock, power and temperature
 - Independent safety clock
 - Independent failure signaling
More Integration & Faster Development – NXP has reliable partner which provide safety solutions on system level e.g. using MPC5744P MCU linked to a System Basis Chip (MC33908) and support you through the certification process by taking the latest safety norms into consideration. Refer to NXP partner list.
Fct Safety Motor Control using MPC5744P – Part 2/2

Details

- NXP Component
- External Vendor Component

Current Sensing Element
- Signal Conditional Op Amp NE5232N

Fuji Power Inverter Module
- PWM Signal

MPC5744P
- Cross Bar Switch – E2E ECC (Addr+Data)
- Memory Protection Unit – 32 regions
- PMU SWT
- E200 Dual up to 180 MHz
- PowerPC™ e200 Safety Checker Core
- Debug
- eDMA

Fault Monitor
- Safety Watchdog

Analog Monitor
- 3.3V
- 5V

PowerSBC MC33908
- Analog I/O

FCCU
- Flex CAN
- Flex PWM

GPIO
- ESD Protection BZA862A
- Suppressor Diodes PTVSSV0Z1U SK

Monitoring of External IC Errors (Fail-Safe Signal)
- 12V

Position Sensor (e.g. Hall Sensor)
- 12V, 3-phase Motor

Fail-Safe Switch
- 12V

12V, 3-phase Motor
- MOSFET Predriver MC33GD3000

PowerPC™ e200 Safety Checker Core
- 4x ADC
- 16CH each

Ethernet
- 384K RAM EEC
- 2.5M Flash EEC

Lin Flex
- TSENS
- CTU

DSPI
- SENT
- eTimer

FCCU
- Flex CAN
- Flex PWM

GPIO
- Pressure Sensor MPXH6101A

Temp. Sensor KTY82/151

PowerSBC MC33908
- V & I Signal

MPC5744P
- SPI Signal

MOSFET Predriver MC33GD3000
- PWM Signal

Fault Interrupt
- Fault Monitor

Analog I/O
- 3.3V
- 5V

PowerSBC MC33908
- 3.3V

PowerPC™ e200 Safety Checker Core
- Debug
- eDMA

Ethernet
- 384K RAM EEC
- 2.5M Flash EEC

Lin Flex
- TSENS
- CTU

DSPI
- SENT
- eTimer

FCCU
- Flex CAN
- Flex PWM

GPIO
- 5V

Pressure Sensor MPXH6101A

Temp. Sensor KTY82/151

PowerSBC MC33908
- Analog I/O

PowerPC™ e200 Safety Checker Core
- Debug
- eDMA

Ethernet
- 384K RAM EEC
- 2.5M Flash EEC

Lin Flex
- TSENS
- CTU

DSPI
- SENT
- eTimer

FCCU
- Flex CAN
- Flex PWM

GPIO
- 5V
MPC574xP Document Support

<table>
<thead>
<tr>
<th>Type</th>
<th>Purpose</th>
<th>Availability</th>
<th>Certification specifics & Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fact Sheet</td>
<td>MPC574xP at a glance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Sheet</td>
<td>Electrical specifications, pin assignments and package diagrams</td>
<td>Public on NXP homepage</td>
<td>N/A</td>
</tr>
<tr>
<td>Reference Manual</td>
<td>Functional characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Guide Evaluation Board</td>
<td>Describes how to use the platform for evaluation and HW / SW development of the MPC574xP in 144LQFP & 257BGA packages</td>
<td></td>
<td>ISO 9001 & ISO/TS16949 (automotive quality) ISO 14001 & OHSAS 18001 (environment, health, & safety)</td>
</tr>
<tr>
<td>NXP Quality Certificates</td>
<td>Evidence of international certificates for manufacturing operations, automotive business units and support processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Manual</td>
<td>Guidelines for the proper use of the MPC574xP Microcontroller in ASIL applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMEDA</td>
<td>Systematic analysis technique to obtain subsystem / product level failure rates, failure modes and diagnostic capability</td>
<td>Upon request (NDA needed)</td>
<td>ISO 26262 & IEC 61508</td>
</tr>
<tr>
<td>FMEDA Report</td>
<td>Results of the FMEDA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Plan</td>
<td>Overall approach to functional safety management in accordance with safety requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Case</td>
<td>Defines the tailoring of a specific safety standard Work Products for a HW SEooC MCU development in conjunction with the safety plan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECURE CONNECTIONS FOR A SMARTER WORLD